摘要:
A semiconductor die package. It includes a substrate having a first surface and a second surface, a first semiconductor die having its front surface facing the first surface of the substrate, a conductive adhesive disposed between the first semiconductor die and the first surface of the substrate, and a second semiconductor die located on the first semiconductor die. The front surface of second semiconductor die faces away from the first semiconductor die, and the back surface faces toward the first semiconductor die. A plurality of conductive structures electrically couple regions at the front surface of the second semiconductor die to conductive regions at the first surface of the substrate.
摘要:
A semiconductor die package. It includes a substrate having a first surface and a second surface, a first semiconductor die having its front surface facing the first surface of the substrate, a conductive adhesive disposed between the first semiconductor die and the first surface of the substrate, and a second semiconductor die located on the first semiconductor die. The front surface of second semiconductor die faces away from the first semiconductor die, and the back surface faces toward the first semiconductor die. A plurality of conductive structures electrically couple regions at the front surface of the second semiconductor die to conductive regions at the first surface of the substrate.
摘要:
Pre-molded component packages that may be as thin as a leadframe for a semiconductor die, systems using the same, and methods of making the same are disclosed. The leads of an exemplary package are exposed at both surfaces at the leadframe. The packages may be stacked upon one another and electrically coupled at the exposed portions of their leads.
摘要:
Pre-molded component packages that may be as thin as a leadframe for a semiconductor die, systems using the same, and methods of making the same are disclosed. The leads of an exemplary package are exposed at both surfaces at the leadframe. The packages may be stacked upon one another and electrically coupled at the exposed portions of their leads.
摘要:
A molded, leadless packaged semiconductor multichip module includes 100 has four mosfets 10, 12, 14, 16 for a full bridge circuit. The mosfets may include two N-channel and two P-channel devices or four mosfets of the same type, but four N-channel are preferred. In module 100 there are two leadframes 30, 40 for assembling the mosfets. In particular, the two N-channel and two P-channel devices are disposed between two leadframes and encapsulated in an electrically insulating molding compound 84. The resulting package has four upper heat sinks 44.1-44.4 that are exposed in the molding compound 84 for transferring heat from the mosfets to the ambient environment. No wire bonds are required. This can significantly reduce the on resistance, RDSON. The top or source-drain lead frame 30 may be soldered to the sources and gates of the bridge mosfets.
摘要:
A molded, leadless packaged semiconductor multichip module includes 100 has four mosfets 10, 12, 14, 16 for a full bridge circuit. The mosfets may include two N-channel and two P-channel devices or four mosfets of the same type, but four N-channel are preferred. In module 100 there are two leadframes 30, 40 for assembling the mosfets. In particular, the two N-channel and two P-channel devices are disposed between two leadframes and encapsulated in an electrically insulating molding compound 84. The resulting package has four upper heat sinks 44.1-44.4 that are exposed in the molding compound 84 for transferring heat from the mosfets to the ambient environment. No wire bonds are required. This can significantly reduce the on resistance, RDSON. The top or source-drain lead frame 30 may be soldered to the sources and gates of the bridge mosfets.
摘要:
A multiple-chip package has top and bottom pre-molded leadframes formed prior to the flip-chip attachment of semiconductor die to the leadframes. After die attachment, underfill is used to encase all but one surface of the die, and the top and bottom leadframes are joined together by solder bump balls with the exposed surfaces of the semiconductor dice proximate to each other.
摘要:
Disclosed are semiconductor die packages constructed from modules of embedded semiconductor dice and electrical components. In one embodiment, a semiconductor die package comprises a first module and a second module attached to the first module. One or more semiconductor dice are embedded in the first module, and one or more electrical components, such as surface-mounted components, are embedded in the second module. The first module may be formed by a lamination process, and the second module may be formed by a lamination process or a molding process. Patterned metal layers and vias provide electrical interconnections to the package and among the die and components of the package. The second module may be attached to the first module by coupling interconnect lands of separately manufactured modules to one another, or may be directly attached by lamination or molding.
摘要:
A molded, leadless packaged semiconductor multichip module includes 100 has four mosfets 10, 12, 14, 16 for a full bridge circuit. The mosfets may include two N-channel and two P-channel devices or four mosfets of the same type, but four N-channel are preferred. In module 100 there are two leadframes 30, 40 for assembling the mosfets. In particular, the two N-channel and two P-channel devices are disposed between two leadframes and encapsulated in an electrically insulating molding compound 84. The resulting package has four upper heat sinks 44.1-44.4 that are exposed in the molding compound 84 for transferring heat from the mosfets to the ambient environment. No wire bonds are required. This can significantly reduce the on resistance, RDSON. The top or source-drain lead frame 30 may be soldered to the sources and gates of the bridge mosfets.
摘要:
A multiple-chip package has top and bottom pre-molded leadframes formed prior to the flip-chip attachment of semiconductor die to the leadframes. After die attachment, underfill is used to encase all but one surface of the die, and the top and bottom leadframes are joined together by solder bump balls with the exposed surfaces of the semiconductor dice proximate to each other.