Abstract:
Provided are a camera module and a method of fabricating the same. The method includes preparing a lens structure including upper connection portions. Lower connection portions are formed in a predetermined region of a substrate. The lower connection portions define a chip region and fit in the upper connection portions, respectively. An image sensor chip is located on the bottom surface of the chip region. The lens structure is adhered to the substrate using the upper and lower connection portions.
Abstract:
A semiconductor package may include a semiconductor pattern, a bonding pad, and a polymer insulation member. The semiconductor pattern may include a semiconductor device and first hole. The bonding pad may include a wiring pattern and plug. The wiring pattern may be formed on an upper face of the semiconductor pattern. The plug may extend from the wiring pattern to fill the first hole. The polymer insulation member may be formed on a lower face of the semiconductor pattern and may include a second hole exposing a lower end of the plug. A method of manufacturing a semiconductor package may include forming a first hole through a semiconductor substrate; forming a bonding pad and plug; attaching a supporting member to the upper face of the substrate; reducing a thickness of the substrate; forming a polymer insulation member on the lower face of the substrate; and cutting the substrate.
Abstract:
A semiconductor package structure is disclosed. The semiconductor package structure includes semiconductor chips on a semiconductor substrate. Each of the semiconductor chips includes chip pads. Through-vias extend through each of the semiconductor chips. Redistribution structures and a chip selection interconnection line are disposed on each of the semiconductor chips. The redistribution structures electrically connect at least one of the through-vias with at least one of the chip pads. Each chip selection interconnection line includes first regions connected to a corresponding number of the through-vias and a second region connecting at least one of the first regions with one of the chip pads. The semiconductor chips are stacked and electrically connected using the through-vias.
Abstract:
A semiconductor package may include a semiconductor pattern, a bonding pad, and a polymer insulation member. The semiconductor pattern may include a semiconductor device and first hole. The bonding pad may include a wiring pattern and plug. The wiring pattern may be formed on an upper face of the semiconductor pattern. The plug may extend from the wiring pattern to fill the first hole. The polymer insulation member may be formed on a lower face of the semiconductor pattern and may include a second hole exposing a lower end of the plug. A method of manufacturing a semiconductor package may include forming a first hole through a semiconductor substrate; forming a bonding pad and plug; attaching a supporting member to the upper face of the substrate; reducing a thickness of the substrate; forming a polymer insulation member on the lower face of the substrate; and cutting the substrate.
Abstract:
A method of fabricating a semiconductor device is provided. The method may include forming an insulating layer on a wafer. The wafer may have an active surface and an inactive surface which face each other, and the insulating layer may be formed on the active surface. A pad may be formed on the insulating layer, and a first hole may be formed in the insulating layer. A first hole insulating layer may then be formed on an inner wall of the first hole. A second hole may be formed under the first hole. The second hole may be formed to extend from the first hole into the wafer. A second hole insulating layer may be formed on an inner wall of the second hole. The semiconductor device fabricated according to the method may also be provided.
Abstract:
A semiconductor package structure is disclosed. The semiconductor package structure includes semiconductor chips on a semiconductor substrate. Each of the semiconductor chips includes chip pads. Through-vias extend through each of the semiconductor chips. Redistribution structures and a chip selection interconnection line are disposed on each of the semiconductor chips. The redistribution structures electrically connect at least one of the through-vias with at least one of the chip pads. Each chip selection interconnection line includes first regions connected to a corresponding number of the through-vias and a second region connecting at least one of the first regions with one of the chip pads. The semiconductor chips are stacked and electrically connected using the through-vias.
Abstract:
In a stacked chip configuration, and manufacturing methods thereof, the gap between a lower chip and an upper chip is filled completely using a relatively simple process that eliminates voids between the lower and upper chips and the cracking and delamination problems associated with voids. The present invention is applicable to both chip-level bonding and wafer-level bonding approaches. A photosensitive polymer layer is applied to a first chip, or wafer, prior to stacking the chips or stacking the wafers. The photosensitive polymer layer is partially cured, so that the photosensitive polymer layer is made to be structurally stable, while retaining its adhesive properties. The second chip, or wafer, is stacked, aligned, and bonded to the first chip, or wafer, and the photosensitive polymer layer is then cured to fully bond the first and second chips, or wafers. In this manner, adhesion between chips/wafers is greatly improved, while providing complete fill of the gap. In addition, mechanical reliability is improved and CTE mismatch is reduced, alleviating the problems associated with warping, cracking and delamination, and leading to an improvement in device yield and device reliability.
Abstract:
A semiconductor package may include a semiconductor pattern, a bonding pad, and a polymer insulation member. The semiconductor pattern may include a semiconductor device and first hole. The bonding pad may include a wiring pattern and plug. The wiring pattern may be formed on an upper face of the semiconductor pattern. The plug may extend from the wiring pattern to fill the first hole. The polymer insulation member may be formed on a lower face of the semiconductor pattern and may include a second hole exposing a lower end of the plug. A method of manufacturing a semiconductor package may include forming a first hole through a semiconductor substrate; forming a bonding pad and plug; attaching a supporting member to the upper face of the substrate; reducing a thickness of the substrate; forming a polymer insulation member on the lower face of the substrate; and cutting the substrate.
Abstract:
A semiconductor package may include a semiconductor pattern, a bonding pad, and a polymer insulation member. The semiconductor pattern may include a semiconductor device and first hole. The bonding pad may include a wiring pattern and plug. The wiring pattern may be formed on an upper face of the semiconductor pattern. The plug may extend from the wiring pattern to fill the first hole. The polymer insulation member may be formed on a lower face of the semiconductor pattern and may include a second hole exposing a lower end of the plug. A method of manufacturing a semiconductor package may include forming a first hole through a semiconductor substrate; forming a bonding pad and plug; attaching a supporting member to the upper face of the substrate; reducing a thickness of the substrate; forming a polymer insulation member on the lower face of the substrate; and cutting the substrate.
Abstract:
A semiconductor package structure and a method of fabricating the same are disclosed. A method of fabricating the semiconductor package structure can be characterized as including forming semiconductor chips on a semiconductor substrate. Each of the semiconductor chips includes chip pads. Through-vias are formed through the semiconductor chips. Redistribution structures and a chip selection interconnection layer are formed on the semiconductor chips, which connect the through-vias with the chip pads. The chip selection interconnection layers are patterned to form chip selection interconnection lines having different structures on at least one of the semiconductor chips. The semiconductor chips are stacked and electrically connected using the through-vias.