Process for thermal treatment of glass fiber preform
    1.
    发明授权
    Process for thermal treatment of glass fiber preform 失效
    玻璃纤维预制件热处理工艺

    公开(公告)号:US5306322A

    公开(公告)日:1994-04-26

    申请号:US924767

    申请日:1992-07-24

    摘要: The present invention providesa process for the dehydrating and purifying treatment by heating a porous glass preform for an optical fiber comprising passing the porous glass preform through a muffle tube having a SiC layer at least on its inner surface at a high temperature under an atmosphere comprising an inert gas and a silicon halogenide gas;a process for the fluorine-doping treatment by heating a porous glass preform for an optical fiber comprising passing a porous glass preform through a muffle tube having a SiC layer at least on its inner surface at a high temperature under an atmosphere comprising a fluorine compound gas and an inert gas; anda process for the vitrifying treatment by heating a porous glass preform for an optical fiber comprising passing the preform, which has been previously dehydrated and purified, through a muffle tube having a SiC layer at least on its inner surface at a high temperature under an atmosphere gas.

    摘要翻译: 本发明提供了一种通过加热用于光纤的多孔玻璃预制件进行脱水和净化处理的方法,包括使多孔玻璃预制件通过具有SiC层的马弗管至少在其内表面上在高温下在包括 惰性气体和卤化硅气体; 通过加热用于光纤的多孔玻璃预制件进行氟掺杂处理的方法,包括使多孔玻璃预制件通过具有SiC层的马弗管至少在其内表面上在高温下在包含氟化合物气体 和惰性气体; 以及通过加热用于光纤的多孔玻璃预制件进行玻璃化处理的方法,包括使预先脱水和净化的预成型体至少在其内表面上通过具有SiC层的马弗管在高温下 气氛气体。

    Mode field diameter conversion optical fiber
    4.
    发明授权
    Mode field diameter conversion optical fiber 失效
    模场直径转换光纤

    公开(公告)号:US5446820A

    公开(公告)日:1995-08-29

    申请号:US98908

    申请日:1993-07-29

    CPC分类号: G02B6/2552

    摘要: An object of this invention is to provide a mode field diameter conversion optical fiber which can be processed in a short period of time to have a reduced mode field diameter at a desired portion thereof. The optical fiber according to this invention comprises a core of silica glass having a residual tensile stress, and a cladding surrounding the core and having a lower refractive index than that of the core. The desired portion is heated to relax the residual tensile stress in the core, whereby the optical fiber has a reduced mode field diameter at the desired portion.

    摘要翻译: 本发明的目的是提供一种可以在短时间内处理以在其期望部分具有减小的模场直径的模场直径转换光纤。 根据本发明的光纤包括具有残余拉伸应力的石英玻璃芯和围绕芯的包层,并且折射率低于芯的折射率。 加热所需部分以松弛芯中的残余拉伸应力,由此光纤在期望部分具有减小的模场直径。

    Method for producing porous glass preform for optical fiber
    5.
    发明授权
    Method for producing porous glass preform for optical fiber 失效
    光纤多孔玻璃预制棒的制造方法

    公开(公告)号:US5238479A

    公开(公告)日:1993-08-24

    申请号:US984734

    申请日:1992-12-04

    IPC分类号: C03B37/014

    摘要: The invention is a method for producing a porous preform for use in the fabrication of an optical fiber at least two burners synthesize glass soot particles, one of which generates a double-layer flame and one of which is used for forming a core part of the preform. The method comprises the steps of supplying SiCl.sub.4 and optionally GeCl.sub.4 to the inner flame of the double-layer flame, and only SiCl.sub.4 to an outer flame of the double-layer flame to flame hydrolyze the supplied compounds and synthesize glass soot particles. Compounds SiCl.sub.4 and GeCl.sub.4 as glass-forming raw materials are supplied to the burner for forming the core part of the preform by depositing the generated glass soot particles on the lower end of a rotating starting member. The generated porous preform comprises a core part containing at least partly GeO.sub.2, and a surface having a low concentration of GeO.sub.2 which reduces cracking or peeling.

    摘要翻译: 本发明是用于制造用于制造光纤的多孔预制棒的方法,至少两个燃烧器合成玻璃烟灰颗粒,其中一个产生双层火焰,其中一个用于形成 预制件。 该方法包括以下步骤:向双层火焰的内部火焰提供SiCl 4和任选的GeCl 4,并且仅将SiCl 4与双层火焰的外部火焰直接火焰水解所提供的化合物并合成玻璃烟灰颗粒。 作为玻璃形成原料的化合物SiCl4和GeCl4通过将生成的玻璃烟灰颗粒沉积在旋转起始构件的下端而供给到用于形成预成型体的芯部的燃烧器。 生成的多孔预制件包括至少部分含有GeO 2的核心部分和具有低浓度GeO 2的表面,其减少开裂或剥离。

    Optical fiber and method of making the same
    7.
    发明授权
    Optical fiber and method of making the same 有权
    光纤及其制作方法

    公开(公告)号:US06400878B1

    公开(公告)日:2002-06-04

    申请号:US09939742

    申请日:2001-08-28

    IPC分类号: G02B602

    摘要: An optical fiber preform 2 having a viscosity ratio R&eegr;=&eegr;0/&eegr;t of 2.5 or less between the core average viscosity &eegr;0 and the total average viscosity &eegr;t is prepared, and is drawn by a drawing furnace 11 so as to yield an optical fiber 3, which is then heated to a temperature within a predetermined range so as to be annealed by a heating furnace 21 disposed downstream the drawing furnace 11. Here, upon annealing in the heating furnace 21, the fictive temperature Tf within the optical fiber lowers, thereby reducing the Rayleigh scattering loss. At the same time, the viscosity ratio condition of R&eegr;≦2.5 restrains the stress from being concentrated into the core, thereby lowering the occurrence of structural asymmetry loss and the like. Hence, an optical fiber which can reduce the transmission loss caused by the Rayleigh scattering loss and the like as a whole, and a method of making the same can be obtained.

    摘要翻译: 准备在芯平均粘度eta0与总平均粘度etat之间具有2.5或更小的粘度比Reta = eta0 / etat的光纤预制棒2,并由拉丝炉11拉伸以产生光纤3, 然后将其加热到预定范围内的温度,以便通过设置在拉丝炉11下游的加热炉21进行退火。这里,在加热炉21中退火后,光纤内的假想温度Tf降低,从而降低 瑞利散射损失。 同时,Reta <= 2.5的粘度比条件限制了应力集中到芯中,从而降低了结构不对称损失的发生等。 因此,可以获得可以降低由瑞利散射损耗等引起的传输损耗等的整体的光纤及其制造方法。

    Process for production of glass preform for optical fiber including
consolidating in a furnace with a temperature gradient
    9.
    发明授权
    Process for production of glass preform for optical fiber including consolidating in a furnace with a temperature gradient 失效
    生产用于光纤的玻璃预制棒的方法,包括在具有温度梯度的炉中固结

    公开(公告)号:US5693115A

    公开(公告)日:1997-12-02

    申请号:US204100

    申请日:1994-03-02

    CPC分类号: C03B37/01446

    摘要: In order to provide an improved process for the production of a glass preform for an optical fiber which includes substantially no bubble formation therein and also has a substantially uniform shape, the present invention provides a process for the production of a glass preform which is at least partially formed from silica. In particular, a body is formed on a rod by depositing fine glass particles thereon, preferably by the vapor phase reactions, and heating the body to vitrify under a reduced atmosphere or a vacuumed atmosphere so that the glass preform is produced. According to this process, the heating includes a first heating step of degassing the body at a first heating temperature, a second heating step of shrinking the body at a second heating temperature which is higher than the first heating temperature and which is lower than a third heating temperature, and a third heating step of vitrifying the shrunken body at the third temperature which corresponds to a vitrification temperature of the fine glass particles so as to produce the glass preform.

    摘要翻译: 为了提供用于生产用于光纤的玻璃预制棒的改进方法,其包括基本上不形成气泡并且还具有基本上均匀的形状,本发明提供了一种用于生产玻璃预制件的方法,所述玻璃预制件至少是 部分由二氧化硅形成。 特别地,通过优选通过气相反应在其上沉积微细玻璃颗粒而在棒上形成主体,并且在还原气氛或真空气氛下将体加热至玻璃化,从而制备玻璃预制件。 根据该方法,加热包括在第一加热温度下使本体脱气的第一加热步骤,在比第一加热温度高于第三加热温度的第二加热温度下使本体收缩的第二加热步骤, 加热温度,第三加热步骤,在与玻璃微细玻璃微粒的玻璃化温度对应的第三温度下使收缩体玻璃化,制成玻璃预制件。

    Optical fiber producing method
    10.
    发明授权
    Optical fiber producing method 有权
    光纤生产方法

    公开(公告)号:US06928840B1

    公开(公告)日:2005-08-16

    申请号:US10089719

    申请日:2000-10-11

    摘要: A drawing apparatus 1 comprises a drawing furnace 11, a protecting tube 21, and a resin curing unit 31. A buffer chamber 41 is disposed between the drawing furnace 11 and the protecting tube 21, and has a length L1 in the drawing direction of the optical fiber 3. The buffer chamber 41 is constituted by a first buffer cell 42 and a second buffer cell 45. In the space within the buffer chamber 41, an He gas, which is an atmosphere gas within the drawing furnace 11, and the air, which is an atmosphere gas within the protecting tube 21, exist in a mixed state. The optical fiber 3 drawn upon heating in the drawing furnace 11 is fed to the protecting tube 21, and a predetermined part of the optical fiber 3 is annealed at a predetermined cooling rate. Thereafter, a coating die 62 coats the optical fiber 3 with a UV resin solution 63, and the resin curing unit 31 cures the UV resin 63, whereby a coated optical fiber 4 is obtained.

    摘要翻译: 拉制装置1包括拉丝炉11,保护管21和树脂固化单元31。 缓冲室41设置在拉丝炉11和保护管21之间,并且在光纤3的拉伸方向上具有长度L 1。 缓冲室41由第一缓冲单元42和第二缓冲单元45构成。 在缓冲室41内的空间内,作为吸入炉11内的气氛气体的He气体和作为保护管21内的气氛气体的空气以混合状态存在。 在拉丝炉11中加热拉制的光纤3被送入保护管21,光纤3的规定部分以规定的冷却速度进行退火。 此后,涂布模具62用UV树脂溶液63涂覆光纤3,树脂固化单元31固化UV树脂63,从而获得涂覆的光纤4。