Abstract:
The invention relates to a charged particle beam exposure apparatus configured to expose cut patterns or via patterns on a substrate having a plurality of line patterns 81a arranged on an upper surface of the substrate at a constant pitch by irradiating the substrate with a plurality of charged particle beams B1 to Bn while moving a one-dimensional array beam A1 in an X direction parallel to the line patterns 81a, the one-dimensional array beam A1 being a beam in which the charged particle beams B1 to Bn are arranged in an Y direction orthogonal to the line patterns 81a.
Abstract:
Provided is a charged particle beam exposure apparatus configured as follows. An electron beam emitted from an electron gun is deformed by an asymmetric illumination optical system to have an elongated section. The electron beam is then applied to a beam shaping aperture plate provided with a plurality of apertures arranged in a line, thereby generating a plurality of electron beams. Exposure of a predetermined pattern is performed on a semiconductor substrate by moving a stage device in a direction orthogonal to line patterns on the semiconductor substrate and turning the plurality of electron beams on or off in synchronization with the movement of the stage device by use of a blanker plate and a final aperture plate.
Abstract:
An electron beam exposure method includes the steps of: preparing an exposure mask having a plurality of opening patterns formed by dividing a drawing object pattern into exposable regions; and drawing the drawing object pattern by performing exposure with an electron beam passing through the opening patterns of the exposure mask. Each end portion serving as a joint in each opening pattern of the exposure mask is provided with a joining portion tapered in a width of the opening pattern. The exposure is performed in such a way that portions drawn through adjacent joining portions overlap each other.
Abstract:
A sample holder to be disposed between an electrostatic chuck and a sample smaller than the upper surface of the electrostatic chuck is provided, the sample holder including: a base plate formed in the same size as the upper surface of the electrostatic chuck; a sample placement portion located on the upper surface of the base plate, and designed to place the sample thereon; and a circumferential portion being a portion of the upper surface of the base plate other than the sample placement portion, and having a conductive material exposed to the outside.
Abstract:
A DA conversion device includes a current output type DA converter, a high-speed operational amplifier operating at a low voltage and configured to generate a voltage corresponding to an output current from the DA converter, and a buffer amplifier connected to an output terminal of the high-speed operational amplifier and operating at a high voltage. The device also includes positive and negative floating power supplies separated from a power supply system and provided as power supplies for driving the DA converter and the high-speed operational amplifier. A midpoint between potentials at the floating power supplies is connected to an output terminal of the buffer amplifier to cause the DA converter and the high-speed operational amplifier to operate mainly based on an output voltage from the buffer amplifier.
Abstract:
An electron beam is irradiated on an observation region of a sample surface. An image (SEM image) is acquired based on a detection signal of secondary electrons from a detector disposed obliquely above the observation region. A length of a shadow of a pattern appearing in the image is detected. Then, a height H of the pattern is calculated by a formula H=L×tan θ on the basis of the detected length L of the shadow and an apparent angle θ of the detector to the sample surface obtained in advance. An intensity distribution of the secondary electrons on a line orthogonal to an edge of the pattern is extracted, and the length L of the shadow of the pattern is obtained as a distance between two points where a recess portion of the intensity distribution intersects a predetermined threshold.
Abstract:
A multi-column electron beam exposure apparatus includes: multiple column cells; an electron beam converging unit in which two annular permanent magnets and electromagnetic coils are surrounded by a ferromagnetic frame, the two annular permanent magnets being magnetized in an optical axis direction and symmetrical about the optical axis, where the electromagnetic coils adjust magnetic fields of the annular permanent magnets; and a substrate provided with circular apertures through which electron beams used in the column cells pass, respectively, where the electron beam converging unit is disposed in each of the circular apertures. The two annular permanent magnets may be disposed one above the other in the optical axis direction, and the electromagnetic coils may be provided inside or outside the annular permanent magnets in their radial direction.
Abstract:
A D/A converter includes a D/A converter base part having a first D/A converter unit performing D/A conversion of high order bits and a second D/A converter unit performing D/A conversion of low order bits and including an auxiliary bit assigned an identical weight to a least significant bit, a correction D/A converter part, an error detection processing section generating a digital code supplied to a correction D/A converter unit in the correction D/A converter part, and a control section. The control section compares one bit current source with another bit current source in a lower order than the one bit current source, and corrects a value of the one bit current source by causing to supply the digital code to the correction D/A converter unit when the value of the one bit current source changes.
Abstract:
A driver circuit includes a main driver which receives an input signal and outputs a first signal corresponding to the input signal, a sub driver which receives the input signal and outputs a non-inverted signal and an inverted signal corresponding to the input signal, a differentiating circuit including resistors and a variable capacity condenser, which outputs signals by differentiating the non-inverted signal and the inverted signal, respectively, and an addition unit which outputs a high frequency emphasized signal given by adding the output signal of the main driver and the signal given by differentiating the non-inverted signal, or a low frequency emphasized signal given by adding the output signal of the main driver and the signal given by differentiating the inverted signal.
Abstract:
In a driver circuit 10 for outputting a simulated signal simulating an input signal subjected to transmission loss, corresponding to the input signal, the driver circuit 10 comprises: a main driver 18 which receives the input signal and outputs an output signal corresponding to the input signal; a sub driver 20 which receives the input signal and outputs an output signal given by inverting the input signal; a high frequency emphasizing circuit 22 which receives the input signal of the sub driver 20 and outputs an output signal having the high frequency of the input signal of the sub driver 20 emphasized; and an addition unit 24 which outputs the simulated signal given by adding the output signal of the main driver 18 and the output signal of the high frequency emphasizing circuit 22.