摘要:
Systems and methods for building predictive and prescriptive analytics of wind turbines generate a historical operational dataset by loading historical operational SCADA data of one or more wind turbines. Each sensor measurement is associated with an engineering tag and at least one component of a wind turbine. The system creates one or more performance indicators corresponding to one or more sensor measurements, and applies at least one data clustering algorithm onto the dataset to identify and label normal operation data clusters. The system builds a normal operation model using normal operational data clusters with Efficiency of Wind-To-Power (EWTP) and defines a statistical confidence range around the normal operation model as criterion for monitoring wind turbine performance. As real-time SCADA data is received by the system, the system can detect an anomalous event, and issue an alert notification and prescriptive early-action recommendations to a user, such as a turbine operator, technician or manager.
摘要:
Computer-implemented methods and systems construct a calibrated operation-centric first-principles model suitable for online deployment to monitor, predict, and control real-time plant operations. The methods and systems identify a plant-wide first-principles model configured for offline use and select a modeled operating unit contained in the plant-wide model. The methods and systems convert the plant-wide model to an operation-centric first-principles model of the selected modeled operating unit. The methods and systems recalibrate the operation-centric model to function using real-time measurements collected by physical instruments of the operating unit at the plant. The recalibration may include reconciling flow and temperature, estimating feed compositions, and tuning liquid and vapor traffic flow in the model. The methods and systems deploy the operation-centric model to calculate KPIs (Key Performance Indicators) using real-time measurements. A processor employs the KPIs and automatically predicts and controls behavior of the physical operating unit at the plant.
摘要:
Embodiments are directed to computer methods and systems that build and deploy a pattern model to detect an operating event in an online plant process. To build the pattern model, the methods and systems define a signature of the operating event, such that the defined signature contains a time series pattern for a KPI associated with the operating event. The methods and systems deploy the pattern model to automatically monitor, during online execution of the plant process, trends in movement of the KPI as a time series. The methods and systems determine, in real-time, a distance score between a range of the monitored time series and the time series pattern contained in the defined signature. The methods and systems automatically detect the operating event in the online industrial process based on the determined distance score, and alter parameters of the process (e.g., valves, actuators, etc.) to prevent the operating event.
摘要:
Deep Learning is a candidate for advanced process control, but requires a significant amount of process data not normally available from regular plant operation data. Embodiments disclosed herein are directed to solving this issue. One example embodiment is a method for creating a Deep Learning based model predictive controller for an industrial process. The example method includes creating a linear dynamic model of the industrial process, and based on the linear dynamic model, creating a linear model predictive controller to control and perturb the industrial process. The linear model predictive controller is employed in the industrial process and data is collected during execution of the industrial process. The example method further includes training a Deep Learning model of the industrial process based on the data collected using the linear model predictive controller, and based on the Deep Learning model, creating a Deep Learning model predictive controller to control the industrial process.
摘要:
A computer system and method optimize feedstock selection planning for an industrial process by evaluating first and second stages at separate intervals throughout the planning process. Evaluating the first stage determines a set of robust feedstocks to procure on long-term contracts. The computer system and method solve, in parallel, multiple simulation cases of a non-linear model generated with different expectation values for uncertain input parameters related to selecting feedstocks to procure on long-term contracts. Probabilistic analyses on the solutions from the simulation cases, including the application of chance-constraints, determine the set of robust feedstocks to procure on long-term contracts. Evaluating the second stage determines a set of robust feedstocks to procure in the spot market, using the information from the first stage. Specifically, the computer system and method solve each of multiple new simulation cases of the non-linear model, generated with different expectation values for uncertain input parameters related to selecting feedstocks to procure in the spot market. Each simulation case is solved to determine breakeven prices for one or more available spot feedstocks, and probabilistic analyses are performed on the breakeven prices for these spot feedstocks to determine a set of robust feedstocks to procure in the spot market.
摘要:
Embodiments are directed to systems that build and deploy inferential models for generating predictions of a plant process. The systems select input variables and an output variable for the plant process. The systems load continuous measurements for the selected input variables. For the selected output variable, the systems load measurements of type: continuous from the subject plant process, intermittent from an online analyzer, or intermittent from lab data. If continuous or analyzer measurements are loaded, the systems build a FIR model with a subspace ID technique using continuous output measurements. From intermittent analyzer measurements, the systems generate continuous output measurements using interpolation. If lab data is loaded, the systems build a hybrid FIR model with subspace ID and PLS techniques, using continuous measurements of a reference variable correlated to the selected output variable. The systems deploy the built model to generate continuous key performance indicators for predicting the plant process.
摘要:
An extension of COSMO-SAC to electrolytes (eCOSMO-SAC) combines the COSMO-SAC term for short range molecule-molecule, molecule-ion and ion-ion interactions with the extended symmetric Pitzer-Debye-Hückel term for long range ion-ion interactions. The extension recognizes that like-ion repulsion and local electroneutrality govern the surface segment contacts, and introduces a dual sigma profile concept for electrolyte systems. The eCOSMO-SAC formulation predicts activity coefficients of several representative electrolyte systems.
摘要:
A computer-based apparatus and method for automated data screening and selection in model identification and model adaptation in multivariable process control is disclosed. Data sample status information, PID control loop associations and internally built MISO (Multi-input, Single-output) predictive models are employed to automatically screen individual time-series of data, and based on various criteria bad data is automatically identified and marked for removal. The resulting plant step test/operational data is also repaired by interpolated replacement values substituted for certain removed bad data that satisfy some conditions. Computer implemented data point interconnection and adjustment techniques are provided to guarantee smooth/continuous replacement values.
摘要:
An integrated multivariable predictive controller (MPC) and tester is disclosed. The invention system provides optimal control and step testing of a multivariable dynamic process using a small amplitude step for model identification purposes, without moving too far from optimal control targets. A tunable parameter specifies the trade-off between optimal process operation and minimum movement of process variables, establishing a middle ground between running a MPC on the Minimum Cost setting and the Minimum Move setting. Exploiting this middle ground, embodiments carry out low amplitude step testing near the optimal steady state solution, such that the data is suitable for modeling purposes. The new system decides when the MPC should run in optimization mode and when it can run in constrained step testing mode. The invention system determines when and how big the superimposed step testing signals can be, such that the temporary optimization give-away is constrained to an acceptable range.
摘要:
A flood point for a packed column is determined by providing a data set of gas pressure drop values as a function of gas flow rate values at several liquid flow rates through a packed column, known flood point value for one liquid flow rate, setting flood point values for higher liquid flow rates at values lower than the known flood point value, and setting flood point values for lower liquid flow rates at values higher than the known flood point value, followed by expressing gas flow rates for liquid flow rates as fractions of the flood point value for each respective liquid flow rate. At a constant gas pressure drop, the method then includes calculating an average fractional flood point value for the liquid flow rates and minimizing the standard deviation between the fractional flood point value at different liquid flow rates and the calculated average fractional flood point value by iteratively resetting fractional flood point values and recalculating the average fractional flood point value for the liquid flow rates, thus resulting in determining a flood point for the packed column at any liquid flow rate, and thereby producing a plot of pressure drop as a function of fraction of flood point at any liquid flow rate, or a mathematical expression thereof that can be used in a computer-implemented column design and process modeling.