Abstract:
A method for processing video information may include calculating a polarity change count (PCC) for a plurality of pixel pairs selected from a plurality of pixels from different fields utilizing a plurality of difference polarity values associated with the plurality of pixel pairs. At least a portion of the plurality of pixels from different fields may be deinterlaced based on at least the calculated PCC. The plurality of difference polarity values may be calculated for the plurality of pixel pairs selected from the plurality of pixels from different fields. At least one difference in amplitude of at least one of the selected pixel pairs may be calculated for the calculating the plurality of difference polarity values. The plurality of pixels from different fields may comprise a plurality of adjacent pixels from a plurality of woven fields.
Abstract:
Data encoding system and method for implementing robust non-volatile memories. A data bit is stored using two memory cells. The data bit is represented by setting a voltage level of a first memory cell to a first voltage level and setting a voltage level of a second memory cell to a second voltage level. In one embodiment, the first voltage level and the second voltage level are of opposite polarity. In one embodiment, to store a data bit having the value “0,” the first memory cell is set to a first voltage level and the second memory cell is set to a second voltage level of opposite polarity to the first voltage level, and to store a data bit having the value “1,” the first memory cell is set to a third voltage level and the second memory cell is set to a fourth voltage level of opposite polarity to the third voltage level. In an illustrative embodiment, the first voltage level is of substantially equal magnitude, and of opposite polarity, to the second voltage level, the third voltage level is of substantially equal magnitude, and of opposite polarity, to the fourth voltage level, the first voltage level is substantially equal to the fourth voltage level, and the second voltage level is substantially equal to the third voltage level. In one embodiment, the data stored according to the present invention is read out by comparing the relative voltages of the first and second memory cells with a differential sense amplifier.
Abstract:
A system and method are disclosed for performing digital multi-channel decoding of a BTSC composite audio signal. Each subsequent stage of the digital multi-channel decoding process is performed at the lowest sampling rate that yields acceptable performance for that stage. Analog-to-digital conversion of the composite audio signal is performed first to generate a composite digital audio signal. After analog-to-digital conversion, all signal processing may be performed in the digital domain. The composite digital audio signal is digitally filtered to frequency compensate for variations caused by previous stages of processing, including IF demodulation. Digital channel demodulation and filtering are performed to isolate single channels of the composite digital audio signal such as SAP, L−R, and L+R channels. SAP and L−R channels are DBX decoded resulting in corresponding decoded signals using a unique combination of digital filters that are an efficient translation of a corresponding combination of analog filters.
Abstract:
A system for operating a wireless mobile device that automatically re-establishes a telephone call after unintended disconnection is disclosed and may include at least one processor operable to wirelessly receive, via a communication network, a first telephone call having associated information identifying a calling party. The at least one processor may be operable to determine whether the calling party or the wireless mobile device is to establish a second telephone call between the calling party and the wireless mobile device upon failure of the first telephone call. The at least one processor may be operable to store the information identifying the calling party of the first telephone call, and to detect a failure of the first telephone call. The at least one processor may be operable to determine whether call re-establishment should be attempted, based upon one or more pre-determined factors.
Abstract:
A personal noise dosimeter having functionality for increasing the dynamic range of the device. A microphone provides a signal to an RMS detector, which provides a DC signal to a two-stage amplifier circuit. The outputs of the amplifiers are provided to a processor having multiple A/D channels. The processor calculates accumulated noise doses and drives a display, which in one embodiment includes a panel of light-emitting diodes. A current source injects current into the output of the RMS detector to reduce performance degradation. Functionality detects and accounts for voltage offsets in the dosimeter. The microphone is turned off during offset determination. In one embodiment, the dosimeter includes functionality for control of external devices such as sound boards.
Abstract:
A system and method for generating transmit weighting values for signal weighting that may be used in various transmitter and receiver structures is disclosed herein. The weighting values are determined as a function of frequency based upon a state of a communication channel and the transmission mode of the signal. In variations, weighting of the weighted signal that is transmitted through each of a plurality of antennas is carried out with one of a corresponding plurality of transmit antenna spatial weights. In these variations, a search may be conducted over various combinations of transmit weighting values and transmit antenna spatial weights in order to find a weight combination that optimizes a performance measure such as the output signal-to -noise ratio, the output bit error rate or the output packet error rate.
Abstract:
A method and system for providing pooling or dynamic allocation of connection context data may comprise receiving data associated with a first network protocol and receiving data associated with a second network protocol. A single shared context memory may be utilized for processing at least some of the data associated with the first network protocol and at least some of the data associated with the second network protocol. At least a portion of the received data associated with the first and/or second network protocols may be offloaded for processing in the single context memory. The received data associated with a first and/or second network protocols may comprise traffic data and control data. Portions of the shared single context memory may be dynamically allocated and/or reallocated for processing received data associated with the first and second network protocols.
Abstract:
System and method for processing signals are disclosed. The method may include converting, in an RF receiver, one or more analog samples, which are selected from one of a plurality of output paths of the RF receiver, to one or more digital samples. A digital feedback value may be generated based on an average of the one or more converted digital samples. A scaled version of the generated digital feedback value may be converted to an analog value. The converted analog value may be fed back to one or more of a plurality of input paths of the RF receiver. The one or more analog samples may be selected from among a plurality of output analog samples from the plurality of output paths of the RF receiver.
Abstract:
Aspects of a method and system for processing signals in a high performance receive chain may include amplifying radio frequency signals in amplifier chains in a multistandard radio frequency front-end, comprising one or more shared processing stages, and combining, with substantially equal gain, a number of phase-shifted radio frequency signals of the radio frequency signals into substantially equal-gain-combined radio frequency signals. The substantially equal-gain-combined radio frequency signals may be demodulated to obtain inphase channels and quadrature channels. A number of inphase channels and quadrature channels may be processed in I-channel processing blocks and Q-channel processing blocks to generate an output analog baseband signal. The multistandard radio frequency front-end may be capable of processing Bluetooth® signals and Wireless Local Area Network (WLAN) signals. The amplifier chains may comprise a first amplifier and a second amplifier, where the first amplifier may be shared between Bluetooth® signal processing paths and WLAN signal processing paths.
Abstract:
Aspects of the invention include determining or choosing any usable media pair from all existing media pairs of a first device. Any channel may be selected from all existing channels and the selected channel is chosen so that it is different from a general channel assignment corresponding to the determined usable media pair. The selected channel may be assigned to the media pair. A second device may be notified of the assigned channel which corresponds to the media pair chosen from all the media pairs. The second device may cross-connect a corresponding equivalent channel and media pair. The first and second device may be adapted to negotiate the assignment of the selected channel to any one of the media pairs. Alternatively, a particular channel and media pair assignment may be selected from a plurality of predetermined channel and media pair assignments and utilized by the first and second device.