Abstract:
Described is a procedure for controlling the shape of a complex metal profile obtained by a successive series of a plurality of bends of a metal sheet on a panel bender machine equipped with a data processing and functions control unit for the machine comprising the entering in the processing unit of data relative to a drawing of the complex profile with physical coordinates, as well as data relative to the thickness of the metal sheet and the distance from the axis of the panel bender machine of the metal sheet-profile edge, and conversion of the drawing supplied with physical coordinates into a digital image with imaging coordinates. The nominal profile processed as above is shown on a suitable display superimposed on the image of the complex profile of the metal sheet acquired by a suitably positioned TV camera. A visual control the correspondence between the two superimposed profiles is then performed on the display. From this comparison it is possible to make corrections to the bending parameters of the panel bender machine.
Abstract:
A panel bender (10) designed for making bends on sheet metal sheets (13) comprises a substantially C-shaped main structure (11) equipped with a fixed element (12) and a mobile element (14) designed to support and clamp in a preset position a sheet metal sheet (13) to be bent, and also comprises a substantially C-shaped blade holder structure (16) connected to the main structure (11) and mobile in space inside this by means of a series of vertical guides (15) at right angles to the plane of the sheet metal sheet (13) to be bent. The blade holder structure is equipped with an upper blade (26) and a lower blade (27) designed to enter into contact with the surface of the sheet metal sheet (13) to be bent clamped between the mobile and fixed elements (12, 14) of the main structure (11) and to deform the sheet metal sheet by means of a movement with a programmable trajectory. The blade holder structure (16) also comprises respective pairs of upper (18) and lower (18′) wedge-shaped slides connected to the vertical guides (15) and running along these, the slides (18, 18′) having counteropposing faces (30, 30′) inclined at a preset angle; each upper (18) and lower (18′) wedge-shaped slide is also connected to the main structure (11) by a respective linear actuator (32, 32′) controlled hydraulically or electro-mechanically. The movements of the linear actuators (32, 32′), which cause the movements of the wedge-shaped slides (18, 18′) in the respective vertical (Y) and horizontal (X) directions, are independent and synchronized by a numeric control system.
Abstract:
Described is a procedure for bending a sheet of sheet metal on a panel bender machine wherein upon bending the sheet of metal sheet a first software (BE) for machine control transmits to a second software (VS) for management of a TV camera (17), positioned in alignment with the bending line, the data relating to the nominal bending angle, the bending length, the distance of the bent edge from the center line of the panel bender and the thickness of the metal sheet. The second software (VS) acquires an image of the bent metal sheet, identifies the spatial position of the straight line corresponding to the bent edge of the sheet of sheet metal and then calculates its geometric coordinates in accordance with a preset referencing system, and supplies to the first software (BE) the value of the angle of the bend performed. The machine control is returned to the first software (BE), which calculates the difference between the angle of the bend actually performed and the angle of the nominal bend and then orders the start of a new bend corresponding to the angular difference, thereby obtaining a bend corresponding to the nominal bend.
Abstract:
A panel bender (10) designed for making bends on sheet metal sheets (13) comprises a substantially C-shaped main structure (11) equipped with a fixed element (12) and a mobile element (14) designed to support and clamp in a preset position a sheet metal sheet (13) to be bent, and also comprises a substantially C-shaped blade holder structure (16) connected to the main structure (11) and mobile in space inside this by means of a series of vertical guides (15) at right angles to the plane of the sheet metal sheet (13) to be bent. The blade holder structure is equipped with an upper blade (26) and a lower blade (27) designed to enter into contact with the surface of the sheet metal sheet (13) to be bent clamped between the mobile and fixed elements (12, 14) of the main structure (11) and to deform the sheet metal sheet by means of a movement with a programmable trajectory. The blade holder structure (16) also comprises respective pairs of upper (18) and lower (18′) wedge-shaped slides connected to the vertical guides (15) and running along these, the slides (18, 18′) having counteropposing faces (30, 30′) inclined at a preset angle; each upper (18) and lower (18′) wedge-shaped slide is also connected to the main structure (11) by a respective linear actuator (32, 32′) controlled hydraulically or electro-mechanically. The movements of the linear actuators (32, 32′), which cause the movements of the wedge-shaped slides (18, 18′) in the respective vertical (Y) and horizontal (X) directions, are independent and synchronised by a numeric control system.
Abstract:
A bender machine designed to bend and shape sheet metal comprising a blade holder unit (1) which has a “C” shaped section, which is mobile and moves in two directions, both of which are at right angles to a fixed bench, and where the unit is fitted with one or more bending blades, wherein: servomotors and planetary gear reducers are used for moving the blade holder unit (1); the blade holder unit (1) uses a jointed mechanism comprising two mechanical units (20, 20a; 30, 30a) which form a closed kinematic chain of five components connected by five kinematic pairs all of which are revolute; the mechanical unit (20, 20a) for moving the blade holder unit (1) in a substantially vertical direction comprises a pair of servomotors coupled respectively to two gear reducers, which operate respective cranks (9, 9a) on which respective connecting rods (8, 8a) are hinged, and where the other end of each connecting rod is connected by respective pins (7, 7a) to a respective base (10, 10a) fixed to the blade holder unit (1). The mechanical unit (30, 30a) for moving the blade holder unit (1) in a substantially horizontal direction comprises one pair of servomotors (6, 6a) coupled to corresponding planetary gear reducers, each of which operates a respective camshaft (3, 3a), and also characterized in that the camshafts (3, 3a) are hinged on the rear supports (2, 2a) of the blade holder unit (1).
Abstract:
Described is a procedure for controlling the shape of a complex metal profile obtained by a successive series of a plurality of bends of a metal sheet on a panel bender machine equipped with a data processing and functions control unit for the machine comprising the entering in the processing unit of data relative to a drawing of the complex profile with physical coordinates, as well as data relative to the thickness of the metal sheet and the distance from the axis of the panel bender machine of the metal sheet-profile edge, and conversion of the drawing supplied with physical coordinates into a digital image with imaging coordinates. The nominal profile processed as above is shown on a suitable display superimposed on the image of the complex profile of the metal sheet acquired by a suitably positioned TV camera. A visual control the correspondence between the two superimposed profiles is then performed on the display. From this comparison it is possible to make corrections to the bending parameters of the panel bender machine.
Abstract:
Described is a procedure for bending a sheet of sheet metal on a panel bender machine wherein upon bending the sheet of metal sheet a first software (BE) for machine control transmits to a second software (VS) for management of a TV camera (17), positioned in alignment with the bending line, the data relating to the nominal bending angle, the bending length, the distance of the bent edge from the centre line of the panel bender and the thickness of the metal sheet. The second software (VS) acquires an image of the bent metal sheet, identifies the spatial position of the straight line corresponding to the bent edge of the sheet of sheet metal and then calculates its geometric coordinates in accordance with a preset referencing system, and supplies to the first software (BE) the value of the angle of the bend performed. The machine control is returned to the first software (BE), which calculates the difference between the angle of the bend actually performed and the angle of the nominal bend and then orders the start of a new bend corresponding to the angular difference, thereby obtaining a bend corresponding to the nominal bend.