Abstract:
A curative system comprising a combination of adipic acid dihydrazide and/or isophthalic dihydrazide and a clathrate in which the guest compound of the clathrate comprises an imidazole, an imidazoline or diazabicycloalkanes (DBCA).
Abstract:
The host compound in a clathrate is an amino or hydroxyl containing aromatic phosphorous compound, clathrates containing a resin curative and their use in curable resin compositions to produce moulded articles particularly fibre reinforced articles.
Abstract:
The present invention is concerned with a moulding material comprising: a) A primary non-woven fibre layer; b) A secondary non-woven fibre layer, and c) A resin layer; wherein the resin layer bonds the secondary non-woven fibre layer to a first surface of the primary non-woven fibre layer, and the resin layer is exposed on the second surface of the primary non-woven layer.
Abstract:
A self-adhesive prepreg comprising a fibre reinforcement layer having a first side and a second side, wherein the first side of the fibre reinforcement layer has been pre-impregnated with a self-adhesive resin composition. The self-adhesive may be used as a structural reinforcement and is especially adapted for direct bonding to oily steel or galvanized steel in the automotive, aerospace and other sheet metal fabrication industries.
Abstract:
There is provided a process for preparing a prepreg (31) comprising reinforcement fibre (13) impregnated with a thermosetting resin matrix (20), said process comprising: a) providing a layer (24) of reinforcement fibre (13); b) applying a layer (24) of a first thermosetting resin matrix (20) to the first surface (15) of the layer (24) of reinforcement fibre (13) and bringing the first surface (15) of the layer (24) of reinforcement fibre (13) into contact with the support surface (5) of a first continuous belt (3), so that the layer (24) of first thermosetting resin matrix (20) is positioned between, and in contact with, the first surface (15) of the layer (24) of reinforcement fibre (13) and the support surface (5) of the first continuous belt (3); c) heating the layer (24) of first thermosetting resin matrix (20) applied to the first surface (15) of the layer (24) of reinforcement fibre (13) in contact with the support surface (5) of the first continuous belt (3); d) bringing the second surface (17) of the layer (24) of reinforcement fibre (13) into contact with the support surface 9) of a second continuous belt (7); e) heating the layer (24) of first thermosetting resin matrix (20) and the layer (24) of reinforcement fibre (13) between the support surfaces of the first and second continuous belts (3, 7) so that the first thermosetting resin matrix (20) impregnates the layer (24) of reinforcement fibre (13); f) cooling the layer (24) of reinforcement fibre (13) impregnated with the first thermosetting resin matrix (20) between the support surfaces of the first and second continuous belts (3, 7); and g) removing the layer (24) of reinforcement fibre (13) impregnated with the first thermosetting resin matrix (20) from the support surfaces of the first and second continuous belts (3, 7).
Abstract:
The invention relates to a prepreg comprising a structural layer of conductive fibres comprising thermosetting resin in the interstices, and a first outer layer of resin comprising thermosetting resin, and comprising a population of conductive free filaments located at the interface between the structural layer and the outer resin layer which, when cured under elevated temperature, produces a cured composite material comprising a cured structural layer of packed conductive fibres and a first outer layer of cured resin, the outer layer of cured resin, comprising a proportion of the population of conductive free filaments dispersed therein, and to a process for manufacturing prepregs wherein the electrically conductive fibres pass a fibre disrupting means to cause a proportion of the fibres on an external face of the sheet to become free filaments.
Abstract:
A method of controlling a process for the manufacture of a multicomponent sheet material having a desired pre-determined parameter comprising applying an acoustic or an electromagnetic signal to interact with the sheet material whereby the interaction modifies the applied signal, detecting the modified signal, comparing the modified signal or data derived from it with data relating to the pre-determined parameter and modifying at least one step of the process whereby the data relating to the modified signal is modified towards the data relating to the pre-determined parameter.
Abstract:
A composite material, the composite material comprising at least one prepreg, said prepreg comprising at least one polymeric resin and at least one fibrous reinforcement; and conducting particles dispersed in the polymeric resin.
Abstract:
A method of controlling a process for the manufacture of a multicomponent sheet material having a desired pre-determined parameter comprising applying electromagnetic energy to interact with the sheet material whereby the interaction modifies the applied energy, detecting the modified energy, comparing the modified energy or data derived from it with data relating to the pre-determined parameter and modifying at least one step of the process whereby the data relating to the modified energy is modified towards the data relating to the predetermined parameter.
Abstract:
A tape for use in automated tape laying machines that includes a multi-layer substrate composed of a plastic layer that includes at least one plastic film having an outer film surface and an inner film surface. The plastic film is adhered to a fibrous layer so that the inner surface of the fibrous layer is bonded to the inner film surface. An uncured composite material layer composed of a fibrous reinforcement and an uncured resin matrix is releasably adhered to either the plastic layer surface or the outer fiber layer surface to provide a tape suitable for use in an automatic tape layer.