Abstract:
Disclosed is an aluminum electrolytic cell having profiled cathode carbon blocks structures, comprising a cell case, a refractory material installed on the bottom, an anodes and a cathode. The cathode carbon blocks include a profiled structure having projections on the top surface of the carbon blocks, that is, a plurality of projections are formed on a surface of the cathode carbon blocks. The aluminum electrolytic cell having the cathode structure according to the present invention can reduce the velocity of the flow and the fluctuation of the level of the cathodal molten aluminum within the electrolytic cell, so as to increase the stability of the surface of molten aluminum, reduce the molten lose of the aluminum, increase the current efficiency, reduce the inter electrode distance, and reduce the energy consumption of the production of aluminum by electrolysis. With the above configuration, compounds or precipitates of viscous cryolite molten alumina can be formed on the lower portion between walls protruding on the upper surface of the cathode, which can prohibit the molten aluminum from flowing into the cell bottom through the cracks and apertures on cathodes, so that the life of the electrolytic cell can be extended.
Abstract:
Disclosed is an aluminum electrolytic cell having profiled cathode carbon blocks structures, comprising a cell case, a refractory material installed on the bottom, an anodes and a cathode. The cathode carbon blocks include a profiled structure having projections on the top surface of the carbon blocks, that is, a plurality of projections are formed on a surface of the cathode carbon blocks. The aluminum electrolytic cell having the cathode structure according to the present invention can reduce the velocity of the flow and the fluctuation of the level of the cathodal molten aluminum within the electrolytic cell, so as to increase the stability of the surface of molten aluminum, reduce the molten lose of the aluminum, increase the current efficiency, reduce the inter electrode distance, and reduce the energy consumption of the production of aluminum by electrolysis. With the above configuration, compounds or precipitates of viscous cryolite molten alumina can be formed on the lower portion between walls protruding on the upper surface of the cathode, which can prohibit the molten aluminum from flowing into the cell bottom through the cracks and apertures on cathodes, so that the life of the electrolytic cell can be extended.
Abstract:
Devices and methods for detecting an analyte in a gas involve the use of plasmonic excitation of a nanostructured sensing element that is tuned to absorb at a narrow bandwidth specific for light absorbed by the analyte. The sensing element can be used as a capacitive or inductive element in a circuit.
Abstract:
Provided herein are systems for controlling a network of distributed non-terrestrial nodes including a control framework operative to train and control a plurality of the non-terrestrial nodes, the control framework including a control interface in communication with a network operator to receive one or more specified control objectives, and a learning engine operative to train a virtual non-terrestrial network, wherein the control framework is further operative to transfer knowledge gained through the training of the virtual non-terrestrial network to the network of distributed non-terrestrial nodes as data-driven logic unit configurations tailored for the specified control objectives.
Abstract:
Provided herein are, in various embodiments, are bottlebrush polymer-oligonucleotides conjugates. In certain embodiments, the conjugates are potent in vivo, have improved biopharmaceutical properties, enhanced transfection efficiency, and/or an unconventional biodistribution profile. Also provided herein are pharmaceutical compositions, methods of treatment, and methods of making bottlebrush polymer-oligonucleotide conjugates.
Abstract:
A method of determining an extent of visual spatial neglect of a patient includes providing a software-based test to the patient via a presentation apparatus positioned on the head of the patient and having a display device positioned close and in front of the eyes of the patient. EEG information is collected from the patient during the test via an EEG apparatus positioned on the head of the patient. Portions of the EEG information collected during the test are used to determine the extent of the visual spatial neglect of the patient. An indication of the extent of the visual spatial neglect of the patient is provided.
Abstract:
Embodiments identify joints of a multi-limb body in an image. One such embodiment unifies depth of a plurality of multi-scale feature maps generated from an image of a multi-limb body to create a plurality of feature maps each having a same depth. In turn, for each of the plurality of feature maps having the same depth, an initial indication of one or more joints in the image is generated. The one or more joints are located at an interconnection of a limb to the multi-limb body or at an interconnection of a limb to another limb. To continue, a final indication of the one or more joints in the image is generated using each generated initial indication of the one or more joints.
Abstract:
The invention relates to a large-scale three-dimensional physical simulation test system for the whole development process of deep engineering rock burst. A CO2 blast cracking device, a dynamic fiber grating and ultrasonic probes are pre-embedded in a physical model sample of similar materials. Acoustic emission probes are pre-mounted on the boundary of a sample. A tunnel excavated in the sample is provided with a three-way acceleration sensor and an industrial endoscope. A sample 3D printer and a drop hammer impact device are arranged outside the three-dimensional static stress loading device. A hydraulic oil source and a controller are arranged outside the three-dimensional static stress loading device and mounted on the ground. The controller is connected with a computer.
Abstract:
A composition of an omega-3 polyunsaturated fatty acid (PUFA)-taxoid conjugate encapsulated in an oil-in-water nanoemulsion (NE) drug delivery system. A method of treating cancer by administering an effective amount of a pharmaceutical composition including a PUFA-taxoid conjugate encapsulated in an oil-in-water NE drug delivery system to a subject in need of treatment, and treating cancer. A method of overcoming multidrug resistance by exposing a multidrug resistant cell to an effective amount of a pharmaceutical composition including an omega-3 polyunsaturated fatty acid (PUFA)-taxoid conjugate encapsulated in an oil-in-water NE drug delivery system, and inducing the death of the multidrug resistant cell. A method of eliminating a cancer stem cell. Methods of reducing stemness of a cancer stem cell, retaining drug in the body, and providing a slower release profile.
Abstract:
A quantitative, ultrashort time to echo, contrast-enhanced magnetic resonance imaging technique is provided. The technique can be used to accurately measure contrast agent concentration in the blood, to provide clear, high-definition angiograms, and to measure absolute quantities of cerebral blood volume on a voxel-by-voxel basis.