Abstract:
A system for tracking at least one bone in robotized computer-assisted surgery, comprises a processing unit and a non-transitory computer-readable memory communicatively coupled to the processing unit and comprising computer-readable program instructions executable by the processing unit for: obtaining backscatter images of the at least one bone from a tracking device in a coordinate system; generating a three-dimensional geometry of a surface of the at least one bone from the backscatter images, the three-dimensional geometry of the surface being in the coordinate system; determining a position and orientation of the at least one bone in the coordinate system by matching the three-dimensional geometry of the surface of the at least one bone to a three-dimensional model of the bone; controlling an automated robotized variation of at least one of a position and orientation of the tracking device as a function of a processing of the backscatter images; and continuously outputting the position and orientation of the at least one bone in the coordinate system to a robot driver controlling a robot arm supporting a surgical tool in the coordinate system for altering the bone.
Abstract:
A computer-assisted surgery (CAS) system outputs a leg length discrepancy and/or an offset between conditions. An inertial sensor unit is connected to an instrument(s) to produce readings representative of its orientation. A CAS processor unit has a coordinate system module for setting a pelvic coordinate system from readings of the inertial sensor unit, a tracking module for tracking an orientation of the instrument(s) relative to the pelvic coordinate system during movements thereof, and a geometrical relation data module for recording preoperatively a medio-lateral orientation of the instrument(s) representative of a medio-lateral axis of the legs and a distance between the legs, for recording after implant rejointing the medio-lateral orientation and the distance, and for calculating a leg length discrepancy and/or an offset, based on the distances and the medio-lateral orientations. An interface outputs the leg length discrepancy and/or the offset between leg conditions.
Abstract:
Embodiments of a system and method for digitizing locations within a coordinate system are generally described herein. A device may include a sleeve including a sleeve tracking marker and a tracked probe portion including an array of tracking markers and a probe tip. Movement of the probe tip relative to the sleeve between at least a first position and a second position may be monitored by tracking the sleeve tracking marker relative to at least one tracking marker of the array of tracking markers.
Abstract:
A pelvic digitizer device has a body defined by a shaft having a tooling end and a handle end with a handle for being manipulated. A visual guide is oriented in a reference plane of the digitizer device. A cup is connected to the tooling end and adapted to be received in an acetabulum of a patient. An inertial sensor unit is connected to the body, the inertial sensor unit having a preset orientation aligned with the reference plane.
Abstract:
A computer-assisted surgery system comprises a first surgical device with a tracking unit tracked during a surgical procedure and adapted to perform a first function associated to the surgical procedure. A second surgical device is adapted to perform a second function associated to the surgical procedure. A triggered unit is triggered when the first surgical device and the second surgical device reach a predetermined proximity relation. A surgical procedure processing unit tracks the first surgical device. A trigger detector detects a triggering of the triggered unit. A CAS application operates steps of a surgical procedure. A controller commands the CAS application to activate a selected step associated with the second function in the surgical procedure when the trigger detector signals a detection. An interface displays information about the selected step in the surgical procedure.
Abstract:
A computer-assisted surgery system for guiding alterations to a bone, comprises a trackable member secured to the bone. The trackable member has a first inertial sensor unit producing orientation-based data. A positioning block is secured to the bone, and is adjustable once the positioning block is secured to the bone to be used to guide tools in altering the bone. The positioning block has a second inertial sensor unit producing orientation-based data. A processing system providing an orientation reference associating the bone to the trackable member comprises a signal interpreter for determining an orientation of the trackable member and of the positioning block. A parameter calculator calculates alteration parameters related to an actual orientation of the positioning block with respect to the bone.
Abstract:
A computer-assisted surgery system comprises a first surgical device with a tracking unit tracked during a surgical procedure and adapted to perform a first function associated to the surgical procedure. A second surgical device is adapted to perform a second function associated to the surgical procedure. A triggered unit is triggered when the first surgical device and the second surgical device reach a predetermined proximity relation. A surgical procedure processing unit tracks the first surgical device. A trigger detector detects a triggering of the triggered unit. A CAS application operates steps of a surgical procedure. A controller commands the CAS application to activate a selected step associated with the second function in the surgical procedure when the trigger detector signals a detection. An interface displays information about the selected step in the surgical procedure.
Abstract:
A patient specific instrument (PSI) surgical guide and method for producing same is described. The method includes: obtaining imagery of at least a portion of a patient, and determining one or more surgical targets in the tissue; planning at least a trajectory of the surgical procedure based on a determined surgical target within the tissue; performing segmentation of the imagery; creating a three-dimensional model of the PSI surgical guide, the PSI surgical guide being customized in size and shape and configured to fit on the specific patient. The PSI surgical guide is then produced to correspond to the modeled PSI surgical guide. The PSI surgical guide has a guide element positioned and oriented to guide a surgical implement along the planned trajectory toward the determined surgical target in the tissue.
Abstract:
A tool for digitizing a mechanical axis of a tibia using a computer-assisted surgery system is described. The tool includes upper and lower mounting ends interconnected by an alignment rod extending therebetween. The upper mounting end is releasably fastenable to an upper reference point on a tibial plateau and the lower mounting end includes a self-centering malleoli engaging mechanism having opposed caliper arms displaceable in a common plane relative to each other for clamping engagement with the medial and lateral malleoli of the ankle. At least one trackable member is mounted to the alignment rod of the tool and is in communication with the computer assisted surgery system for providing at least orientation information of the alignment rod. The mechanical axis of the tibia is parallel to the alignment rod and extends between the upper and lower reference points when the tool is mounted on the tibia.
Abstract:
A method of determining a reference point on condyles of a femur uses a computer assisted surgery system having a digitizer with perpendicular first and second planar surfaces, the digitizer being locatable and trackable in three dimensional space by the computer assisted surgery system. A digitized plane is created using the digitizer, the digitized plane being a posterior plane and/or a distal plane of the condyles. The posterior plane and the distal plane are respectively defined by the first and second planar surfaces of the digitizer. A location of the reference point in the digitized plane is then determined using the computer assisted surgical system. The reference point is a most remote point of the femur within the digitized plane.