Abstract:
A wireless communication system and method comprising co-location of a pico evolved node B (“eNB”) and a macro up-link repeater is disclosed. User Equipment (“UE”) communicates with a macro eNB via the up-link repeater with reduced transmission power as compared to the transmission power required for the UE to communicate directly with the macro eNB. As a result, the UE does not desensitize the pico eNB receiver. The up-link repeater comprises a donor antenna that radiates a highly directional beam to the macro eNB.
Abstract:
An improved microwave cavity filter used in cellular communication systems such as base stations is disclosed. The cavity filter has a conductive housing forming a cavity therein and a hollow conductive resonator configured in the cavity with a folded hat shaped upper portion. A tuning screw extends from the top cover of the housing into the top folded hat portion of the hollow resonator to fine tune the resonator. The resonator also may preferably include two different diameter sections providing a first high impedance section with smaller diameter and a second lower impedance section with a larger diameter configured at an upper end of the resonator. This configuration provides a significantly smaller cavity height for a given power handling capability. The resonator is preferably of constant thickness allowing low cost stamping or other forming techniques to be used in forming the resonator.
Abstract:
A digital distributed antenna system (DDAS) that regains the capability to perform simulcast to multiple simulcast groups while using a base station's direct digital output is provided. The User Plane data is adapted for simulcast and also for eliminating time delay ambiguities across multiple simulcast digital radios. In addition, the Control and Management Plane is aggregated across multiple remote units to allow a non-modified donor digital base station to control simulcast groups. The result is a low cost digital DAS that can efficiently distribute the capacity of a digital base station to solve coverage and capacity requirements in a manner similar to that now accomplished using a traditional base station with RF in/out.
Abstract:
An improved surge protection for protecting an electronic device is disclosed, the device having a closed casing with walls made of a non-conducting material and being internally coated with a thin metallic layer. The device also has at least one connector, being arranged in an opening in the walls and including a connector body, at least a portion of which projects outwardly from the wall and which accommodates an internal coupling device, to which a transmission cable, including a central conductor and an outer shield conductor, is connectable. According to the invention, the connector body is also made of a non-conducting material and strong currents, being present at a conducting protection sleeve, are diverted by at least one conducting diversion member to at least one metallic structure, being in permanent electric contact with ground and having a high capacity of conducting strong currents. In use, the at least one conducting diversion member is in electrical contact with the protection sleeve, and extends radially outwardly from the protection sleeve, through the connector body, to the at least one metallic structure.
Abstract:
The present invention relates to a reflector for an antenna comprising a first reflector assembly and at least one second reflector assembly, the first reflector assembly having a first reflector structure adapted for a first antenna frequency band f1 and at least one second antenna frequency band f2; the at least one second reflector assembly having a second reflector structure adapted for the first antenna frequency band f1 and at least one third antenna frequency band f3; and wherein the first reflector assembly and the at least one second reflector assembly are electrically coupled so that the first reflector assembly and the at least one second reflector assembly together form a common reflector structure adapted for the first f1, at least one second f2 and at least one third f3 antenna frequency bands. Furthermore, the invention also relates to a multi band antenna comprising at least one such reflector.
Abstract:
Generally described, the present disclosure relates to antennas with an active component and a passive component, generally referred to as an active-passive antenna. More specifically, aspects of the present application include a combination of an active antenna element configured to process communications in accordance with a first frequency bandwidth and a passive antenna element configured to process communication in accordance with a second frequency bandwidth. Still further, the present disclosure includes the integration of the active and passive antenna components as well as the utilization of components of traditional active array antennas to allow the incorporation of the active-passive antenna in the same form factor previously utilized for solely active array antennas.
Abstract:
The present invention relates to a reflector for an antenna comprising a first reflector assembly and at least one second reflector assembly, the first reflector assembly having a first reflector structure adapted for a first antenna frequency band ƒ1 and at least one second antenna frequency band ƒ2; the at least one second reflector assembly having a second reflector structure adapted for the first antenna frequency band ƒ1 and at least one third antenna frequency band ƒ3; and wherein the first reflector assembly and the at least one second reflector assembly are electrically coupled so that the first reflector assembly and the at least one second reflector assembly together form a common reflector structure adapted for the first ƒ1, at least one second and at least one third ƒ3 antenna frequency bands. Furthermore, the invention also relates to a multi band antenna comprising at least one such reflector.
Abstract:
An electrical connector assembly or cable assembly that carries a combination of radio frequency signals, high speed digital communication signals, and direct current DC power signals is disclosed. The electrical connector assembly exhibits environmental protection. Other features include providing blind mate connection that may be used in a radio transport or fiber transport repeater system for a wireless network.
Abstract:
A tuneable resonator filter consisting of cavity resonators. In the partition wall separating the successive resonators on the transmission path of a resonator filter there is a coupling opening (CPO) with a typically constant width. The coupling strength between the resonators is adjusted by a tuning element which is supported to the partition wall on the opposite sides of the coupling opening so that it can be moved. The tuning element is conductive and grounded so that the impedance between its ends and the partition wall is low. For moving the tuning element, it is linked by a dielectric rod to an electrically controllable actuator being located on the filter lid. By means of the tuning mechanism the bandwidth of a filter can be set automatically.
Abstract:
An improved microwave cavity filter used in cellular communication systems such as base stations is disclosed. The cavity filter has a conductive housing forming a cavity therein and a hollow conductive resonator configured in the cavity with a folded hat shaped upper portion. A tuning screw extends from the top cover of the housing into the top folded hat portion of the hollow resonator to fine tune the resonator. The resonator also may preferably include two different diameter sections providing a first high impedance section with smaller diameter and a second lower impedance section with a larger diameter configured at an upper end of the resonator. This configuration provides a significantly smaller cavity height for a given power handling capability. The resonator is preferably of constant thickness allowing low cost stamping or other forming techniques to be used in forming the resonator.