Multiple layers cylindrical cell
    1.
    发明申请

    公开(公告)号:US20250007121A1

    公开(公告)日:2025-01-02

    申请号:US18344832

    申请日:2023-06-29

    Applicant: STOREDOT LTD.

    Abstract: An electrochemical cell that includes (i) a cathode tabs electrical coupler; (ii) an anode tabs electrical coupler; and (iii) a stack that is rolled about an axis, wherein the stack includes multiple instances of: (a) a cathode sheet; (b) a cathode tab that extends from the cathode sheet at a first direction; (c) an anode sheet, (e) an anode tab that extends from the anode sheet at a second direction, the second direction differs from the first direction; and (f) one or more separator sheets. Multiple cathode tabs of the multiple instances are coupled in parallel to each other by the cathode tabs electrical coupler. Multiple anode tabs of the multiple instances are coupled in parallel to each other by the anode tabs electrical coupler.

    Aerogel-based electrodes
    4.
    发明授权

    公开(公告)号:US11569499B2

    公开(公告)日:2023-01-31

    申请号:US16697220

    申请日:2019-11-27

    Applicant: StoreDot Ltd.

    Abstract: Electrodes, production methods and mono-cell batteries are provided, which comprise active material particles embedded in electrically conductive metallic porous structure, dry-etched anode structures and battery structures with thick anodes and cathodes that have spatially uniform resistance. The metallic porous structure provides electric conductivity, a large volume that supports good ionic conductivity, that in turn reduces directional elongation of the particles during operation, and may enable reduction or removal of binders, conductive additives and/or current collectors to yield electrodes with higher structural stability, lower resistance, possibly higher energy density and longer cycling lifetime. Dry etching treatments may be used to reduce oxidized surfaces of the active material particles, thereby simplifying production methods and enhancing porosity and ionic conductivity of the electrodes. Electrodes may be made thick and used to form mono-cell batteries which are simple to produce and yield high performance.

    ELECTRICAL CONNECTION OF ELECTRODE TABS OF AN ELECTROMECHANICAL CELL

    公开(公告)号:US20210399393A1

    公开(公告)日:2021-12-23

    申请号:US17304647

    申请日:2021-06-23

    Applicant: STOREDOT LTD.

    Abstract: An electrochemical cell that may include a cathode sheet; a cathode tab that extends from the cathode sheet; an anode sheet; an anode tab that extends from the anode sheet, the second direction differs from the first direction; one or more separator sheets; and a first electrical connecting unit. The cathode sheet, the anode sheet and the one or more separator sheets are wound around a common axis to form multiple windings; wherein the one or more separator sheets separate between the anode sheet and the cathode sheet. The first electrical connecting unit mechanically and electrically contacts a first portion of a first electrode tab, the first portion belongs to a first winding of the multiple windings; wherein the first electrode tab is one of the anode tab and the cathode tab.

    Passivated and/or protected silicon anode material slurries

    公开(公告)号:US11196039B2

    公开(公告)日:2021-12-07

    申请号:US16732587

    申请日:2020-01-02

    Applicant: Storedot Ltd.

    Abstract: Methods of preparing Si-based anode slurries and anode made thereof are provided. Methods comprise coating silicon particles within a size range of 300-700 nm by silver and/or tin particles within a size range of 20-500 nm, mixing the coated silicon particles with conductive additives and binders in a solvent to form anode slurry, and preparing an anode from the anode slurry. Alternatively or complementarily, silicon particles may be milled in an organic solvent, and, in the same organic solvent, coating agent(s), conductive additive(s) and binder(s) may be added to the milled silicon particles—to form the Si-based anode slurry. Alternatively or complementarily, milled silicon particles may be mixed, in a first organic solvent, with coating agent(s), conductive additive(s) and binder(s)—to form the Si-based anode slurry. Disclosed methods simplify the anode production process and provide equivalent or superior anodes.

    ELECTROLYTE ADDITIVES FOR FAST CHARGING LITHIUM ION BATTERIES

    公开(公告)号:US20210234197A1

    公开(公告)日:2021-07-29

    申请号:US16774004

    申请日:2020-01-28

    Applicant: StoreDot Ltd.

    Abstract: Lithium ion batteries and electrolytes therefor are provided, which include electrolyte additives having dithioester functional group(s) that stabilize the SEI (solid-electrolyte interface) at the surfaces of the anode material particles, and/or stabilize the CEI (cathode electrolyte interface) at the surfaces of the cathode material particles, and/or act as oxygen scavengers to prevent cell degradation. The electrolyte additives having dithioester functional group(s) may function as polymerization controlling and/or chain transfer agents that regulate the level of polymerization of other electrolyte components, such as VC (vinyl carbonate) and improve the formation and operation of the batteries. The lithium ion batteries may have metalloid-based anodes—including mostly Si, Ge and/or Sn as anode active material particles.

    SILVER AND/OR TIN COATED SILICON ACTIVE MATERIAL AND ANODE SLURRIES FORMED THEREFROM

    公开(公告)号:US20210210754A1

    公开(公告)日:2021-07-08

    申请号:US16732506

    申请日:2020-01-02

    Applicant: Storedot Ltd.

    Abstract: Methods of preparing Si-based anode slurries and anode made thereof are provided. Methods comprise coating silicon particles within a size range of 300-700 nm by silver and/or tin particles within a size range of 20-500 nm, mixing the coated silicon particles with conductive additives and binders in a solvent to form anode slurry, and preparing an anode from the anode slurry. Alternatively or complementarily, silicon particles may be milled in an organic solvent, and, in the same organic solvent, coating agent(s), conductive additive(s) and binder(s) may be added to the milled silicon particles—to form the Si-based anode slurry. Alternatively or complementarily, milled silicon particles may be mixed, in a first organic solvent, with coating agent(s), conductive additive(s) and binder(s)—to form the Si-based anode slurry. Disclosed methods simplify the anode production process and provide equivalent or superior anodes.

    ENERGY AND POWER DENSE FAST-CHARGING LITHIUM ION BATTERIES

    公开(公告)号:US20210210741A1

    公开(公告)日:2021-07-08

    申请号:US16735737

    申请日:2020-01-07

    Applicant: Storedot Ltd.

    Abstract: Prelithiation methods and fast charging lithium ion cell are provided, which combine high energy density and high power density. Several structural and chemical modifications are disclosed to enable combination of features that achieve both goals simultaneously in fast charging cells having long cycling lifetime. The cells have anodes with high content of Si, Ge and/or Sn as principal anode material, and cathodes providing a relatively low C/A ratio, with the anodes being prelithiated to have a high lithium content, provided by a prelithiation algorithm. Disclosed algorithms determine lithium content achieved through prelithiation by optimizing the electrolyte to increase cycling lifetime, adjusting energy density with respect to other cell parameters, and possibly reducing the C/A ratio to maintain the required cycling lifetime.

Patent Agency Ranking