Abstract:
An apparatus and method of control for converting DC (direct current) power from a solar photovoltaic source to AC (alternating current) power. A novel DC-to-AC power converter topology and a novel control method are disclosed. This combination of topology and control are very well suited for photovoltaic microinverter applications. Also, a novel variant of this control method is illustrated with a number of known photovoltaic DC-to-AC power converter topologies. The primary function of both control methods is to seek the maximum power point (MPP) of the photovoltaic source with novel, iterative, perturb and observe control algorithms. The control portion of this invention discloses two related control methods, both an improvement over prior art by having greatly improved stability, dynamic response and accuracy.
Abstract:
A controller (28) for a doubly fed induction generator (12,20) adjusts control signals to a rotor side converter (24) and line side converter (22) to adjust rotor current when a voltage transient on a utility grid (10) occurs, so that the doubly fed induction generator can ride through the transient. The controller can also turn off the transistors of the rotor side converter (24) to reduce rotor current and/or activate a crowbar (42) to reduce the voltage of the DC link (26) connecting the converters (22, 24) when significant voltage transients occur on the grid (10). This permits continued operation of the DFIG system without disconnecting from the grid.
Abstract:
An apparatus and method of control for converting DC (direct current) power from a solar photovoltaic source to AC (alternating current) power. A novel DC-to-AC power converter topology and a novel control method are disclosed. This combination of topology and control are very well suited for photovoltaic microinverter applications. Also, a novel variant of this control method is illustrated with a number of known photovoltaic DC-to-AC power converter topologies. The primary function of both control methods is to seek the maximum power point (MPP) of the photovoltaic source with novel, iterative, perturb and observe control algorithms. The control portion of this invention discloses two related control methods, both an improvement over prior art by having greatly improved stability, dynamic response and accuracy.
Abstract:
A method and apparatus for converting wind generated electricity to constant frequency electricity for supplying it to a utility grid. use a wind turbine generator having a doubly fed induction generator. Above the synchronous speed of the generator, the electricity from the rotor is converted to direct current (dc) electricity and the de electricity is converted back to alternating current (ac) electricity at a fixed unity power factor. Below synchronous speed, electricity flows to the rotor from the utility grid also at a fixed unity power factor. The current of the ac electricity is adjusted to be in phase with the utility grid voltage, wherein the ac electricity is maintained substantially at unity power factor.
Abstract:
A computer readable, media and signals for controlling power drawn from an energy converter to supply a load, where the energy converter is operable to convert energy from a physical source into electrical energy. Power drawn from the energy converter is changed when a supply voltage of the energy converter meets a criterion. The criterion and the change in the amount of power drawn from the energy converter are dependent upon a present amount of power supplied to the load. The methods, apparatus, media and signals described herein may provide improvements to DC to AC maximum power point tracking in an energy conversion system such as a photovoltaic power generation system.
Abstract:
A duty cycle controller apparatus for producing a duty cycle signal for controlling switching of switches of a battery charger having an AC input for receiving power and an output for supplying power to charge a battery in response to switching of the switches, while maintaining a high power factor at the AC input. The duty cycle controller apparatus includes a current command signal generator having a plurality of signal inputs for receiving a plurality of signals representing a plurality of operating conditions of the charger, a plurality of current command outputs and a processor operably configured to generate a plurality of current command signals at the current command outputs in response to respective sets of operating conditions.
Abstract:
An electrical power converter for converting power from a bipolar DC source to supply an AC load is disclosed. For one such embodiment the bipolar DC source is a photovoltaic array and the AC power is sourced into an electric power grid. The bipolar photovoltaic array has positive and negative voltage potentials with respect to earth ground. The converter is a utility interactive inverter which does not require an isolation transformer at the electric power grid interface. Embodiments of the invention include methods of detecting and interrupting DC ground faults in the photovoltaic array.
Abstract:
An electrical power converter for converting power from a bipolar DC source to supply an AC load is disclosed. For one such embodiment the bipolar DC source is a photovoltaic array and the AC power is sourced into an electric power grid. The bipolar photovoltaic array has positive and negative voltage potentials with respect to earth ground. The converter is a utility interactive inverter which does not require an isolation transformer at the electric power grid interface. Embodiments of the invention include methods of detecting and interrupting DC ground faults in the photovoltaic array.
Abstract:
A control strategy for distributed power generation modules in a power system that varies the line frequency or voltage according to a predetermined pattern to cause a PV inverter to modify its power output and thereby avoid overcharging a battery. When the power system operates in islanded mode, the AC load demand can be lower than the available energy from the PV array, causing the battery to become overcharged. To avoid this scenario, a hybrid inverter executes a pattern generator algorithm that varies the line frequency or voltage linearly, exponentially or any mathematical function or look-up tables. The PV inverter executes a pattern detection algorithm that detects the linear, exponential, or any mathematical function or look-up table change in the line frequency. In response, the PV inverter modifies its power output until an overcharging condition of the battery is removed. The line frequency/voltage can be varied within the anti-islanding limits.
Abstract:
A combiner circuit and voltage protection circuit is disclosed. A plurality of photovoltaic sources is provided. A set of fuses, each having one side coupled to one of the plurality of photovoltaic sources is provided. A set of contacts, each having one side coupled to the other side of one of the fuses is provided. The other side of the contacts are coupled together to combine the output of the photovoltaic sources to an output interface, the output interface being coupled to the load. A set of diodes are each coupled to each of the set of fuses and form a current path around the set of contacts. A transistor is coupled to each of the diodes and the load interface. The transistor has an on state completing the flow of current through the diodes around the set of contacts to the load interface.