Abstract:
The present invention provides a system and method for performing a single-scan rest-stress cardiac measurement. In one aspect, the system includes a positron emission tomography (PET) imaging system, a source of a first PET radiotracer for administration to a subject, a source of a second PET radiotracer for administration to a subject, and a processor. The processor has non-transient computer readable media programmed with instructions to obtain PET images of the subject administered with the radiotracer. Furthermore, the computer readable media is programmed with instructions to process the PET images with a non-steady-state, multi-compartment parametric model. An output of the non-steady-state, multi-compartment parametric model is a measure of myocardial blood flow for both a rest state and a stress state of the subject.
Abstract:
In an image processing apparatus according to an embodiment, a noise information obtaining unit obtains information about an obstructive factor that is related to the precision level of perfusion images and is contained in pieces of medical image data acquired chronologically; on the basis of a TDC at an inflow blood vessel for an analysis target tissue of which the perfusion state is analyzed and on the basis of a perfusion model of the analysis target tissue, an estimating unit estimates a TDC of the analysis target tissue; on the basis of the estimated TDC of the analysis target tissue and on the basis of the information about the obstructive factor, a generating unit generates assessment information used for assessing reliability of the perfusion images generated from the pieces of medical image data; and a display control unit exercises control so that a display unit displays the assessment information.
Abstract:
A computer-based method for automatically determining total body albumin of a living being based on the calculated intravascular albumin, the calculated observed ratio of amount of albumin in the intravascular system to amount of albumin in the extravascular system at the first time, and the baseline of expected ratio of amount of albumin in the intravascular system to amount of albumin in the extravascular system at the first time.
Abstract:
A method of identifying perfusion abnormalities in a heart of a patient. The method is performed with a patient stress map including stress values, a patient rest map including rest values, and one or more normal maps. The normal maps may include a normal change limit map including change limits, and a normal stress limit map including stress limits. The stress and rest maps are co-registered with one another and the normal maps. The method includes creating a patient change map by subtracting the rest count values of the rest map from the stress count values of the co-registered stress map. Then, in some embodiments, the patient stress and change maps are jointly compared to the normal stress and change limit maps to detect one or more hypoperfused regions. In such embodiments, the one or more regions detected are identified as having perfusion abnormalities and optionally displayed.
Abstract:
In certain embodiments, methods of the present invention obtain dynamic data sets of an NMR spectroscopy signal of polarized 129Xe in a selected structure, environment, or system. The signal data can be used to evaluate: (a) the physiology of a membrane or tissue; (b) the operational condition or function of a body system or portion thereof (when at rest or under stimulation); and/or (c) the efficacy of a therapeutic treatment used to treat a diagnosed disorder, disease, or condition. Thus, the present invention provides methods for screening and/or diagnosing a respiratory, cardiopulmonary disorder or disease such as chronic heart failure, and/or methods for monitoring the efficacy of therapeutics administered to subject to treat the disorder or disease.
Abstract:
A system for delivery of a capsule to a target location within a subject body including a capsule including a locomotion element and a gamma emitting radioactive source, a radiation tracking subsystem capable of locating the gamma emitting radioactive source in three dimensions, and a locomotion control subsystem capable of controlling movement of the capsule by effecting movement of the locomotion element, based, at least partly, on a location of the gamma emitting radioactive source provided by the radiation tracking subsystem. A method of measuring a velocity of flow of a fluid at a target location within a subject body including inserting a capsule including a locomotion element and a gamma emitting radioactive source into the body, using a radiation tracking subsystem to locate the gamma emitting radioactive source in three dimensions, moving the capsule to the target location within the body using a locomotion control subsystem which controls movement of the capsule by effecting movement of the locomotion element, based, at least partly, on location of the gamma emitting radioactive source provided by the radiation tracking subsystem, and measuring the velocity of flow of the fluid at the target location. Related apparatus and methods are also described.
Abstract:
A method for stabilizing the reconstruction of an imaged volume is presented. The method includes the steps of performing an analysis of the reliability of reconstruction of a radioactive-emission density distribution of the volume from radiation detected over a specified set of views, and defining modifications to the reconstruction process and/or data collection process to improve the reliability of reconstruction, in accordance with the analysis.
Abstract:
One aspect of the present invention relates to imaging a patient to determine whether he or she has suffered a myocardial infarction. According to this method, a patient is injected with a bolus having a radioactive tracer. A representative cycle is produced for both the right ventricular passage of the bolus and the left ventricular passage of the bolus based on planar coordinates over time of scintillation events of the tracer. A time activity curve based on activity in each segment of the respective representative cycles is generated. When a segment of heart muscle is damaged its contraction ceases or lags behind the normal surrounding myocardium resulting in a phase shift in the adjacent blood pool.
Abstract:
The present invention relates to the capabilities of a highly sensitive radioactive-emission camera, a result of a meticulous search for the many different effects that combine synergistically to increase sensitivity and spatial, spectral, and time resolutions. The new camera opens a new realm in SPECT-type imaging, making it viable for dynamic studies, the use of radiopharmaceutical cocktails, molecular imaging, dosimetry and other studies requiring the high sensitivity and resolutions. In particular, the new camera opens the door to SPECT expert system, examples for which are provided. The expert system relates to defining disease signatures for automatic diagnosis, preferably, based on a multi-parameter vector, preferably, based on kinetic radiopharmaceutical values. Additionally or alternatively, based on simultaneous administration of multiple isotopes.
Abstract:
In certain embodiments, methods of the present invention obtain dynamic data sets of an NMR spectroscopy signal of polarized 129Xe in a selected structure, environment, or system. The signal data can be used to evaluate: (a) the physiology of a membrane or tissue; (b) the operational condition or function of a body system or portion thereof (when at rest or under stimulation); and/or (c) the efficacy of a therapeutic treatment used to treat a diagnosed disorder, disease, or condition. Thus, the present invention provides methods for screening and/or diagnosing a respiratory, cardiopulmonary disorder or disease such as chronic heart failure, and/or methods for monitoring the efficacy of therapeutics administered to subject to treat the disorder or disease.