Abstract:
The concepts disclosed herein offer a new simple and reliable reconstructive option for the treatment of first carpal-metacarpal joint (basal joint) arthritis and consists of an intra-articular basal joint stabilizer sling combined with a surgical method of implantation.
Abstract:
A technique to manufacture small joint orthopedic implants includes the steps of taking standard radiographs of a pathologic joint and the corresponding non-pathologic joint. In order to provide an accurate frame of reference, a specialized marker is placed in the radiographic field. By inspection of the radiographs and by comparison with the marker, the dimensions of the cortical bone and the cancellous bone can be quickly and accurately determined. These dimensions can be used to manufacture a suitable implant and installation tool. Typically, the implant will include a stem from which a post projects. A radially extending collar is located at the intersection between the stem and the post. A mating head is attached to the post. The head closely approximates the size and shape of the natural head being replaced. The stem will be non-round in cross-section to prevent rotation of the stem in the bone. For many applications, the head will not be fixedly attached to the post, but will be rotatable about the longitudinal axis of the post. One or more spacers that fit about the stem also can be provided in order to adjust the distance that the head projects from the bone.
Abstract:
A method is provided for depositing a hard wear resistant surface onto a porous or non-porous base material of a medical implant. The wear resistant surface of the medical implant device may be formed by a Laser Based Metal Deposition (LBMD) method such as Laser Engineered Net Shaping (LENS). The wear resistant surface may include a blend of multiple different biocompatible materials. Further, functionally graded layers of biocompatible materials may be used to form the wear resistant surface. Usage of a porous material for the base may promote bone ingrowth to allow the implant to fuse strongly with the bone of a host patient. The hard wear resistant surface provides device longevity, particularly when applied to bearing surfaces such as artificial joint bearing surfaces or a dental implant bearing surfaces.
Abstract:
A method is provided for depositing a hard wear resistant surface onto a porous or non-porous base material of a medical implant. The wear resistant surface of the medical implant device may be formed by a Laser Based Metal Deposition (LBMD) method such as Laser Engineered Net Shaping (LENS). The wear resistant surface may include a blend of multiple different biocompatible materials. Further, functionally graded layers of biocompatible materials may be used to form the wear resistant surface. Usage of a porous material for the base may promote bone ingrowth to allow the implant to fuse strongly with the bone of a host patient. The hard wear resistant surface provides device longevity, particularly when applied to bearing surfaces such as artificial joint bearing surfaces or a dental implant bearing surfaces. An antimicrobial material such as silver may be deposited in combination with a metal to form an antimicrobial surface deposit.
Abstract:
A joint prosthesis is provided that includes a proximal implant for attachment to a first portion of skeletal anatomy, the proximal implant including a proximal bone attachment portion and a distal cup portion. The prosthesis also includes a distal implant for attachment to a second portion of skeletal anatomy, the distal implant including a distal bone attachment portion and a proximal cup portion. An inter-joint element is located between the distal cup and the proximal cup. The inter-joint element includes surface portions shaped to complement said cups and is preferably formed as an ovoid. Each of the proximal implant, distal implant and inter-joint element include magnetic regions whereby the inter-joint element is attracted to both the proximal cup portion and to the distal cup portion to thereby provide stability across a large angular motion.
Abstract:
The concepts disclosed herein offer a new simple and reliable reconstructive option for the treatment of first carpal-metacarpal joint (basal joint) arthritis and consists of an intra-articular basal joint stabilizer sling combined with a surgical method of implantation.
Abstract:
The present invention relates to implants used for alleviating and/or preventing conditions relating to damaged joints involving articulating surfaces. The implants comprise fibre of polymer and/or metal, and can be used as an artificial joint, as part of an artificial joint or as an artificial joint spacer made to replace the missing cartilage or to improve the slidability between two natural and/or artificial components of the body, or between a natural and artificial component. The product of the invention can be used to partly or entirely coat medical products or to make up implant partly or entirely.
Abstract:
A technique to manufacture small joint orthopedic implants includes the steps of taking standard radiographs of a pathologic joint and the corresponding non-pathologic joint. In order to provide an accurate frame of reference, a specialized marker is placed in the radiographic field. By inspection of the radiographs and by comparison with the marker, the dimensions of the cortical bone and the cancellous bone can be quickly and accurately determined. These dimensions can be used to manufacture a suitable implant and installation tool. Typically, the implant will include a stem from which a post projects. A radially extending collar is located at the intersection between the stem and the post. A mating head is attached to the post. The head closely approximates the size and shape of the natural head being replaced. The stem will be non-round in cross-section to prevent rotation of the stem in the bone. For many applications, the head will not be fixedly attached to the post, but will be rotatable about the longitudinal axis of the post. One or more spacers that fit about the stem also can be provided in order to adjust the distance that the head projects from the bone.
Abstract:
A sling suspension system for supporting the thumb of a patient after basal joint arthroplasty, the sling suspension system comprising: an index metacarpal anchor, a thumb metacarpal anchor and a sling for securing the thumb metacarpal anchor to the index metacarpal anchor; the index metacarpal anchor comprising at least one bone-engaging element for engaging the index metacarpal and a sling-engaging element for capturing the sling to the index metacarpal anchor; the thumb metacarpal anchor comprising at least one bone-engaging element for engaging the thumb metacarpal and a sling-engaging element for capturing the sling to the thumb metacarpal anchor; and the sling comprising an elongated body having a first anchor-engaging element for securing the sling to the sling-engaging element of the index metacarpal anchor, and a second anchor-engaging element for securing the sling to the sling-engaging element of the thumb metacarpal anchor, wherein the second anchor-engaging element is adjustable.
Abstract:
Joint replacement spacers that fully seat against the cut surface of a bone while remaining free to move on the cut surface within prescribed limits; methods of joint replacement using such spacers.