Abstract:
The invention in suitable embodiments is directed to a method for cell energy therapeutics, the method comprising inducing an in vivo or in vitro cell to comprise an element for treating a disease, condition, or disorder. In one aspect, a composition comprising a source of energy and an isolated protein is for use in transforming a living cell into a therapeutic, a diagnostic, a sensor, a regenerative, or a cosmetic element for use in treating one or more type of disease, condition, or disorder.
Abstract:
Certain exemplary embodiments of the present disclosure can provide an apparatus and method for generating at least one radiation can be provided. The exemplary apparatus and/or method can selectively kill and/or affect at least one virus. For example, a radiation source first arrangement can be provided which is configured to generate at least one radiation having one or more wavelengths provided in a range of about 200 nanometers (nm) to about 230 nm, and at least one second arrangement can be provided which is configured to prevent the at least one radiation from having any wavelength that is outside of the range can be provided or which can be substantially harmful to cells of the body.
Abstract:
Methods for the treatment of a cell proliferation disorder in a subject, involving: (1) administering to the subject at least one activatable pharmaceutical agent that is capable of effecting a predetermined cellular change when activated, either alone or in combination with at least one energy modulation agent; and (2) applying an initiation energy from an initiation energy source to the subject, wherein the applying activates the activatable agent in situ, thus causing the predetermined cellular change to occur, wherein the predetermined cellular change treats the cell proliferation disorder, preferably by causing an increase or decrease in rate of cell proliferation, and a kit for performing the method, a computer implemented system for performing the method, a pharmaceutical composition useful in the method and a method for causing an autovaccine effect in a subject using the method.
Abstract:
The present invention relates, inter alia, to dermal systems comprising at least one light source and at least one pharmaceutically and/or cosmetically active ingredient. The dermal systems can be employed in order to enhance the penetration and action of the pharmaceutically and/or cosmetically active ingredient.
Abstract:
Described is a dermal system which contains at least one light source and at least one pharmaceutically and/or cosmetically active ingredient. The dermal system can be employed in order to enhance the penetration and action of the pharmaceutically and/or cosmetically active ingredient. The at least one light source is a thin light source comprising at least one inorganic light emitting diode (LEDs) and/or at least one organic light emitting device.
Abstract:
Methods for the treatment of a cell proliferation disorder in a subject, involving: (1) administering to the subject at least one activatable pharmaceutical agent that is capable of effecting a predetermined cellular change when activated, either alone or in combination with at least one energy modulation agent; and (2) applying an initiation energy from an initiation energy source to the subject, wherein the applying activates the activatable agent in situ, thus causing the predetermined cellular change to occur, wherein the predetermined cellular change treats the cell proliferation disorder, preferably by causing an increase or decrease in rate of cell proliferation, and a kit for performing the method, a computer implemented system for performing the method, a pharmaceutical composition useful in the method and a method for causing an autovaccine effect in a subject using the method.
Abstract:
Systems and methods for treating a pathogenic bacterial infection are provided. The treatment may include introducing bioluminescent bacteria into a lung of a human or animal subject, and performing photodynamic therapy on the lung using light emitted from the bioluminescent bacteria.
Abstract:
Methods and devices related to the treatment of diseases using phototherapy are described. Some embodiments provide an organic light-emitting diode device, such as a light-emitting device for phototherapy, comprising Ring System 1, Ring System 2, Ring System 3, Ring System 4 or Ring System 5. Methods of treating disease with phototherapy are also described.
Abstract:
A phototherapy patch is disclosed, which includes: an adhesive layer, having a first surface and an opposite second surface; a pharmaceutical drug layer, disposed on the first surface of the adhesive layer; and a spontaneous emission layer, disposed over the pharmaceutical drug layer and capable of emitting therapeutic light by light illumination or a chemical reaction. Accordingly, the phototherapy patch according to the present invention has no power supply disposed therein, and thereby is suitable to be manufactured as a particularly thin and thus inconspicuous device.
Abstract:
The present invention relates, inter alia, to dermal systems comprising at least one light source and at least one pharmaceutically and/or cosmetically active ingredient. The dermal systems can be employed in order to enhance the penetration and action of the pharmaceutically and/or cosmetically active ingredient.