Abstract:
A heating device and a method for the inductive heating of a flat steel strip in a hot rolling mill. The heating device is between two rolling trains of the hot rolling mill and the flat steel strip runs at a speed through the heating device in a transporting direction. The heating device includes: transverse-field modules arranged one after the other along the transporting direction of the flat steel strip; longitudinal-field modules arranged one after the other along the transporting direction of the flat steel strip and arranged before or after the transverse-field modules along the transporting direction; a first power supply supplying at least one transverse-field module with a first alternating voltage; and a second power supply supplying at least one longitudinal-field module with a second alternating voltage. The power supplies have a converter and an electrically connected capacitor bank with multiple capacitors connected in parallel.
Abstract:
A method for preparing a high-performance tantalum target, a high-performance target prepared by the method, and a use of the high-performance target. The method for preparing the high-performance tantalum target comprises: firstly, preparing a tantalum ingot into a forging blank by a method of cold forging in conjunction with hot forging; then, rolling the forging blank by a hot rolling method; and finally, performing leveling, and performing discharging, milling and surface treatment according to a size of a finished product, so as to obtain the tantalum target. The tantalum target prepared by the method has uniform crystallization, with a grain size between 50 μm and 120 μm. A texture component where a texture (110) dominants in the thickness direction of the target is obtained. A total proportion of three textures (111), (110) and (100) is between 40% and 50%, ensuring a consistent sputtering rate of the tantalum target during use.
Abstract:
In a method of producing a grain-oriented electrical steel sheet by hot rolling a steel slab having a chemical composition comprising C: 0.001 to 0.10 mass %, Si: 1.0 to 5.0 mass %, Mn: 0.01 to 0.5 mass %, S and/or Se: 0.005 to 0.040 mass %, sol. Al: 0.003˜0.050 mass % and N: 0.0010 to 0.020 mass %, subjecting to single cold rolling or two or more cold rollings including an intermediate annealing therebetween to a final thickness, performing primary recrystallization annealing, and thereafter applying an annealing separator to perform final annealing, a temperature range of 550° C. to 700° C. in a heating process of the primary recrystallization annealing is rapidly heated at an average heating rate of 40 to 200° C./s, while any temperature zone of from 250° C. to 550° C. is kept at a heating rate of not more than 10° C./s for 1 to 10 seconds, whereby the refining of secondary recrystallized grains is attained and grain-oriented electrical steel sheets are stably obtained with a low iron loss.
Abstract:
In a rolling train, prior to being rolled, the rolled stock, or slab, produced in an ingot casting process, has the shape of a truncated pyramid with a base area, a top area and four side areas. During a first rolling pass sequence, two opposite side areas of the rolled stock are rolled in a first direction so that all of the cross-sectional areas of the rolled stock oriented transversely with respect to the rolling direction have the same surface area when the sequence ends. The rolled stock is rotated, e.g., through 90°, and during a second rolling pass sequence, the same two opposite side areas of the rolled stock are rolled in a second direction transversely with respect to the first direction. Thus, material of the rolled stock is automatically redistributed to a desired geometry with a high degree of precision and without the use of vertical rolling stands.
Abstract:
A method for assigning surplus slabs in slab yards to orders includes loading slab pre-yards of a plurality of production lines with surplus slabs, describing the assignment of the surplus slabs to the orders with a mathematical model, grouping order data and slab data based on steel grades, obtaining an assignment scheme for the surplus slabs and the orders in each group with a mixed scatter search algorithm, and assigning the surplus slabs to the orders using the assignment scheme. If a surplus slab is in a pre-yard of a production line associated with an order the surplus slab is assigned to, the slab is moved using a crane to the production line. Otherwise, the slab is moved to the pre-yard associated with the production line, and then moved using a crane to the production line. The slab is then heated and rolled by the production line.
Abstract:
There are provided a wear resistant austenitic steel having superior machinability and toughness in weld heat affected zones and a method for producing the austenitic steel. The austenitic steel includes, by weight %, manganese (Mn): 15% to 25%, carbon (C): 0.8% to 1.8%, copper (Cu) satisfying 0.7C-0.56(%)≦Cu≦5%, and the balance of iron (Fe) and inevitable impurities, wherein the weld heat affected zones have a Charpy impact value of 100 J or greater at −40° C. The toughness of the austenitic steel is not decreased in weld heat affected zones because the formation of carbides during welding is suppressed, and the machinability of the austenitic steel is improved so that a cutting process may be easily performed on the austenitic steel. The corrosion resistance of the austenitic steel is improved so that the austenitic steel may be used for an extended period of time in corrosive environments.
Abstract:
An object of the present invention is to provide an aluminum alloy foil for an electrode current collector, the foil having a high strength after the drying step while keeping a high electrical conductivity. Disclosed is a method for manufacturing an aluminum alloy foil for electrode current collector, including: maintaining an aluminum alloy ingot comprising 0.03 to 0.1% of Fe, 0.01 to 0.1% of Si, 0.0001 to 0.01% of Cu, 0.005% or less of Mn, with the rest being Al and unavoidable impurities, at 550 to 620° C. for 1 to 20 hours, and subjecting the resulting ingot under a hot rolling with a starting temperature of 500° C. or higher and an end-point temperature of 255 to 300° C.
Abstract:
Rolling method for the production of flat products with low productivity, comprising a continuous casting step at a speed comprised between 3.5 m/min and 6 m/min of a thin slab with a thickness comprised between 25 mm and 50 mm, a roughing step to reduce the thickness in at least one forming stand or roughing stand, to a value comprised between 10 mm and 40 mm, preferably between 10 mm and 30 mm, even more preferably between 10 mm and 20 mm and suitable for winding, a rapid heating step using induction in order to at least restore the temperature lost in the segment downstream of casting and in the roughing step, a winding/unwinding step in a winding/unwinding device with two mandrels, a rolling step in a Steckel type rolling unit with two reversing type stands of the product unwound by the winding/unwinding device comprising not more than three double rolling passes, or two inversions, in order to obtain a final product comprised between 1-1.2 mm and 16 mm, a cooling step and a winding step of the final product.
Abstract:
A method of making metal articles as well as sputtering targets is described, which involves deforming an ingot to preferred dimensions. In addition, products made by the process of the present invention are further described.