Abstract:
A heat-sensitive recording material including a substrate, a heat-sensitive recording layer which includes N-(4-methylphenylsulfonyl)-/V-(3-(4-methylphenylsulfonyloxy)pheny-purea and/or N42-(3-phenylureido)phenyl]benzol sulfonamide, and an intermediate layer which is arranged between the substrate and the heat-sensitive recording layer and which includes calcined aluminum silicate, and a method for producing a heat-sensitive recording material and to the use of calcined aluminum silicate in an intermediate layer of a heat-sensitive recording material.
Abstract:
Provided are a transfer film for forming a decorative layer on at least one surface of a film sensor, the transfer film including a temporary support and a coloring composition layer, the coloring composition layer including a black pigment or a white pigment, in which a content a (% by mass) of the black pigment or the white pigment in the coloring composition layer and a film thickness b (μm) of the coloring composition layer satisfy Expression 1; and a transfer film including a temporary support and a coloring composition layer, the coloring composition layer including a black pigment or a white pigment, in which a content a (% by mass) of the black pigment or the white pigment in the coloring composition layer and a film thickness b (μm) of the coloring composition layer satisfy Expression 1, 80>a×b>10 Expression 1.
Abstract:
A polyester film has a wax on a surface of one side of the film and is a polyester film in which this wax is dispersed in the form of islands on the surface of the film, and a filling factor of the wax in the film surface is 20 to 45%, and, as for a number of islands of the wax dispersed in the form of islands and each of which has an area of 200 μm2 or larger, there is one or less/10000 μm2.
Abstract:
The present invention relates to a thermally printable paper article with an elastomeric underlayer, which imparts improved printing performance.
Abstract:
A thermal transfer image receiving sheet including a substrate having a surface, a heat-insulating layer formed on the surface, an undercoat layer formed on the heat-insulating layer, and a dye-receiving layer formed on the undercoat layer. The undercoat layer includes as a main component a polycondensate made from i) at least one of an alkoxide, a hydrolyzate of an alkoxide, and tin chloride, ii) a water-soluble polymer, iii) a vinyl pyrrolidone-vinyl imidazole copolymer, and iv) a urethane resin.
Abstract:
An optical patterning mask, including a base substrate, a reflective layer disposed on the base substrate, the reflective layer including a first opening, a shadow pattern disposed on the base substrate and in the first opening, a thermal insulation layer disposed on the base substrate and covering the reflective layer and the shadow pattern, an absorption layer disposed on the thermal insulation layer, a bank layer disposed on the absorption layer, the bank layer including a second opening overlapping the first opening, a thermal conduction prevention pattern disposed on the absorption layer and overlapping the shadow pattern, and a transfer layer disposed on the absorption layer, the bank layer, and the thermal conduction prevention pattern.
Abstract:
The optical patterning mask had a protection layer on a light absorption layer. It prevents the light absorption layer from damaged by the cleaning gas when processing the used optical patterning mask for reuse. The protection layer may be made of the same material as bank layer or of material different from the bank layer. The bank layer defines the boundary of the area to be transferred in the transfer layer. The protection layer of the present invention can maintain longer the transfer efficiency of the optical patterning mask, even when the same mask is used repeatedly after cleaning, since the light absorption layer protected from cleaning process can maintain longer its heat conversion property.
Abstract:
The present invention relates to a process for manufacturing coated substrates by providing a substrate, providing at least one mineral material, providing a polysaccharide material comprising one or more polysaccharides, coating the substrate with the at least one mineral material, and coating the resulting pre-coat layer of mineral material with the gel comprising one or more polysaccharides, as well as the coated substrate obtained by this process and its use.
Abstract:
A substrate coated with a markable ink formulation, comprising AOM. Further, the substrate is covered by a thermoplastic polymer layer, such that the ink formulation is situated between the substrate and the thermoplastic polymer layer and/or in the thermoplastic polymer layer.
Abstract:
A donor substrate, a method of laser induced thermal imaging, and a method of manufacturing an organic light emitting display device are disclosed. In the method of laser induced thermal imaging, a donor substrate is provided to include a base substrate, a light to heat conversion layer, a transfer layer and a functional layer. The functional layer includes a material radiating an infrared light. The donor substrate is laminated to an acceptor substrate. A laser beam is radiated into the donor substrate, thereby forming an organic layer pattern on the acceptor substrate from the transfer layer. A position of the organic layer pattern is observed using an infrared microscope. A laser beam position is adjusted and the donor substrate is separated from the acceptor substrate.