Abstract:
A work vehicle includes a controller configured or programmed to include an input revolutions number calculator to calculate an input revolutions number, and a vehicle speed controller switchable between a first vehicle-speed control mode and a second vehicle-speed control mode. In the first vehicle-speed control mode, the vehicle speed controller is configured or programmed to control a vehicle speed of the work vehicle based on a value detected by an input rotation sensor. In the second vehicle-speed control mode, the vehicle speed controller is configured or programmed to control the vehicle speed based on a value calculated by the input revolutions number calculator.
Abstract:
A low-voltage hybrid powertrain system for a vehicle includes an engine that is coupled via an engine disconnect clutch to an input member of the transmission, and a low-voltage electric machine is coupled to the transmission. The powertrain system operates in an electric vehicle (EV) mode with the engine in an OFF state and with the engine disconnect clutch in an open/deactivated state. When an output torque request indicates a command for vehicle acceleration, the electric machine is controlled to generate torque in response to the output torque request and the engine is simultaneously cranked and started. Upon starting, the engine operates in a speed control mode to activate the engine disconnect clutch. The engine and the low-voltage electric machine are controlled to generate torque in response to the output torque request when the engine disconnect clutch is activated.
Abstract:
A transmission includes an input shaft coupled to a prime mover, a countershaft, main shaft, and an output shaft, with gears between the countershaft and the main shaft. The shift actuator is mounted on an exterior wall of a housing including the countershaft and the main shaft. A shift control circuit operates a shift actuator using a first opposing pulse command and a first actuating pulse command, and releases pressure with shift actuating and opposing volumes of the shift actuator upon determining a shift completion event.
Abstract:
A hybrid system includes a transmission control module, a power source, a transmission, and a drive train. The transmission control module partially operates the hybrid system and receives operating information from various components of the system, calculates power losses in the drive train, and calculates the driving torque needed to reach a target power profile determined from a driver's input.
Abstract:
A system includes a friction element having a driving mechanism and a driven mechanism. At least one of the driving mechanism and the driven mechanism is configured to rotate. A drive unit is configured to provide a torque to at least one of the driving mechanism and the driven mechanism. A control processor is configured to diagnose a friction element failure based on a slip speed, which is the difference between rotational speeds of the driving mechanism and the driven mechanism. The control processor is further configured to induce a slip condition as part of a shift process and diagnose the friction element failure if the derived slip speed is substantially zero after inducing the slip condition.
Abstract:
A method and control system for controlling an engine includes an instantaneous crankshaft acceleration determining module determining an instantaneous crankshaft acceleration. An engine parameter adjustment module adjusts an engine parameter in response to the instantaneous crankshaft acceleration.
Abstract:
A hybrid vehicle propulsion system including, an internal combustion engine, a torque converter including a lockup clutch the torque converter having an input and an output, the input coupled to the internal combustion engine, an electric energy conversion device coupled downstream of the torque converter output, and a control system for adjusting torque output of the hybrid propulsion system, the control system adjusting the torque output of the electric energy conversion device during a torque converter lockup clutch engagement transition event.
Abstract:
A method for detecting sustained combustion in the engine of a hybrid electric powertrain that includes a starter/generator driveably connected to the engine, a transmission for driving a load, and an input clutch for opening and closing a drive connection between the electric machine and the transmission, includes the steps of using the starter/generator to produce torque and crank the engine, preparing the engine to produce combustion, producing torque capacity across the input clutch while slipping the clutch, and continuing use of the starter/generator until a sum of the crankshaft torque applied by the starter/generator and the crankshaft torque applied by the transmission is less than some torque threshold for a predetermined period length.
Abstract:
A clutch device for an automatic transmission, including a clutch drum supporting frictional coupling elements, a clutch piston disposed radially outwardly of the clutch drum, and a rotary speed sensor disposed radially outwardly of the clutch piston to detect a rotating speed of the clutch piston. The clutch piston has an inner spline for engagement with an outer spline of the clutch drum to prevent relative rotation between the clutch piston and the clutch drum, and further has a plurality of recesses formed in an outer circumferential surface thereof and corresponding to respective teeth of the inner spline, and a plurality of oil holes formed therethrough at an axial position of the clutch device at which the rotary speed sensor is located. The recesses and the oil holes are equally spaced apart from each other in a circumferential direction of the clutch piston.
Abstract:
A method for detecting sustained combustion in the engine of a hybrid electric powertrain that includes a starter/generator driveably connected to the engine, a transmission for driving a load, and an input clutch for opening and closing a drive connection between the electric machine and the transmission, includes the steps of using the starter/generator to produce torque and crank the engine, preparing the engine to produce combustion, producing torque capacity across the input clutch while slipping the clutch, and continuing use of the starter/generator until a sum of the crankshaft torque applied by the starter/generator and the crankshaft torque applied by the transmission is less than some torque threshold for a predetermined period length.