Abstract:
Disclosed herein are vaccine compositions, in particular, polyvalent icosahedral compositions for antigen presentation. The disclosed compositions may contain an S particle made up of recombinant fusion proteins. The recombinant fusion proteins may include a norovirus (NoV) S domain protein, a linker protein domain operatively connected to the norovirus S domain protein, and an antigen protein domain operatively connected to said linker.
Abstract:
Nucleic acids encoding norovirus VP1 fusion proteins and VLPs comprising the norovirus VP1 fusion proteins are provided. Methods for norovirus VP1 fusion protein and norovirus VLP production in plants are also described. The VP1 fusion protein comprises, a first sequence encoding an S domain derived from a first norovirus strain, and a second sequence encoding a P domain derived from a second norovirus strain.
Abstract:
Disclosed herein are vaccine compositions, in particular, polyvalent icosahedral compositions for antigen presentation. The disclosed compositions may contain an S particle made up of recombinant fusion proteins. The recombinant fusion proteins may include a norovirus (NoV) S domain protein, a linker protein domain operatively connected to the norovirus S domain protein, and an antigen protein domain operatively connected to said linker.
Abstract:
Genes for proteins which spontaneously form dimers and/or oligomers can be recombinantly linked together, which upon expression in E. coli produces stable dimeric fusion proteins that spontaneously self-assemble into enormous, polyvalent complexes having increased immunogenicity and functionality. Linear, network and agglomerate complexes with enormous sizes and polyvalences are constructed using glutathione S-transferase, Norovirus P domains (NoV P− and NoV+), the protruding (P) domain of hepatitis E virus (HEV P), the astrovirus P domain (AstV), a monomeric peptide epitope (M2e of influenza virus), and/or a protein antigen (VP8* of rotavirus) fused in different combinations. The resulting complexes can contain hundreds to thousands NoV P-protein, HEV, AstV, M2e and/or VP8* copies and exhibit higher immunogenicity than the individual proteins alone. The large size and multivalent nature of the complexes are candidates as a bivalent or multivalent vaccines against Norovirus and other pathogens, and for generation of antibodies for diagnosis and research purposes.
Abstract:
A substituted Norovirus capsid protein monomer, having only the P-domain, includes a foreign antigen inserted into one or more of three surface loops present on each P-domain monomer by molecular cloning. The antigen-P-domain monomer can assemble spontaneously into an octahedral, antigen-Norovirus P-particle, composed of 24 copies of the monomer. Each substituted P-domain monomer can contain one to three copies of the foreign antigen, for a total of 24-72 antigen copies on each antigen-P-particle. The antigen-P-particle is useful in methods for diagnosing, immunizing and treating individuals infected with a foreign virus and as a carrier for development of vaccines against many infectious and non-infectious diseases. The substituted monomer can be readily produced in E. coli and yeast, are highly stable and tolerate a wide range of physio-chemical conditions. The P-particle-VP8 chimeras may also serve as a dual vaccine, for example, against both rotavirus and norovirus.
Abstract:
The method described herein provides a novel platform utilizing yeast as a biological non-host system to express and assemble whole viruses for use as attenuated or killed vaccines.
Abstract:
The present invention relates to a vaccine composition against feline calicivirus (CFV) infection. The composition comprises a capsid protein of Feline calicivirus-49 (CFV-49), a pharmaceutical accepted carrier and optionally an adjuvant. The present invention further relates to a feline vaccine composition further comprises other live, attenuated or inactivated CVF component in addition to the capsid protein of FCV-49. The present invention also relates to a method for making or using the vaccine compositions.
Abstract:
The present invention relates to antigenic and vaccine compositions comprising Norovirus antigens and adjuvants, in particular, mixtures of monovalent VLPs and mixtures of multivalent VLPs, and to a process for the production of both monovalent and multivalent VLPs, the VLPs comprising capsid proteins from one or more Norovirus genogroups.
Abstract:
The present invention relates to a combined norovirus and rotavirus vaccine for prevention of norovirus and rotavirus infection and/or viral-induced diarrheal and vomiting diseases in man. More specifically, the invention comprises a method of preparing combination vaccine compositions comprising norovirus and rotavirus antigens, in particular mixtures of norovirus VLPs and rotavirus recombinant VP6 protein or double-layered VP2/VP6 VLPs. In addition, the invention relates to methods of inducing an immune response.
Abstract:
The present invention relates to a novel, isolated and purified hemorrhagic feline calicivirus FCV-DD1. The invention further embraces monovalent and multivalent vaccines containing the new FCV-DD1 strain. In addition, the invention encompasses methods of protecting felines against infection or preventing disease caused by feline calicivirus alone or in addition to other pathogens that comprises administering to the felines an immunologically effective amount of the monovalent and multivalent vaccines described herein. Also, the invention concerns methods for diagnosing or detecting the hemorrhagic feline calicivirus in a susceptible host, asymptomatic carrier and the like by detecting the presence of feline calicivirus FCV-DD1 or antibodies raised or produced against feline calicivirus FCV-DDI antigen.