Abstract:
A control technique for an engine having a two-step variable valve lift system includes a controller receiving a pressure in an intake manifold of the engine from a manifold absolute pressure (MAP) sensor and a position of an EGR valve of the engine from an exhaust gas recirculation (EGR) sensor. In response to the controller detecting an upcoming HL-to-LL valve state transition, a set of airflow actuators of the engine is controlled, based on the intake manifold pressure and the EGR valve position, to generate a first torque reserve. In response to generating the first torque reserve, the controller then commands the HL-to-LL transition and depletion of the first torque reserve during the HL-to-LL transition to mitigate torque disturbance associated with this transition.
Abstract:
A control device for an internal combustion engine includes an ECU. The internal combustion engine includes an oil pump, a crankshaft, a camshaft, and a variable valve timing mechanism. The ECU is configured to: calculate a required engine torque, which is an engine torque requested by a driver, based on accelerator operation amount information; calculate a future target phase of the variable valve timing mechanism based on a rotational speed of the internal combustion engine and the required engine torque; calculate an anticipated deviation that is a difference between the future target phase and a current actual phase; and control a discharge amount of oil from the oil pump based on the anticipated deviation.
Abstract:
A method for diagnosis of at least one valve in at least one cylinder in a combustion engine comprising the steps, at a movement of a piston in said cylinder, of detecting movements propagating in a cylinder head of the cylinder or of parts adjacent thereto in the engine, comparing values resulting from the detection step with at least one stored setpoint value, and determining the state of said at least one valve, based on the result of said comparison.
Abstract:
A method and device for determining a value for a valve lift of a valve of an individual cylinder of a multi-cylinder internal combustion engine are provided. The method includes determining a first exhaust-gas lambda value for fuel combustion in the individual cylinder in a first operating state of the engine by a cylinder-individual and time-resolved detection of lambda values without an artificial variation in an air/fuel ratio. The method also includes determining an air mass sucked in by all cylinders of the engine in the first operating state. The method also includes determining the value for the valve lift of the valve of the individual cylinder based on the first exhaust-gas lambda value, the determined air mass, and a correction value, wherein the correction value is based on a relationship between the valve lift and an associated air mass sucked in by all cylinders of the engine.
Abstract:
A variable valve timing device that allows a valve timing of an engine valve to be varied by relatively rotating a vane rotor and a housing. The variable valve timing includes a lock mechanism that releases the locking in accordance with the application of a lock releasing oil pressure. A crank angle CCA at which the application of the lock releasing oil pressure is instructed can be varied in accordance with an engine speed NE so that the lock releasing oil pressure rises at a crank angle in which cam torque is suitable for lock releasing.
Abstract:
A control system for an engine includes a position determination module and a position control module. The position determination module determines a first cam phaser position for starting the engine prior to engine shut down, and determines a second cam phaser position for starting the engine while the engine is shut down. The position control module adjusts a cam phaser to the first cam phaser position at engine shut down. The position control module adjusts the cam phaser from the first cam phaser position to the second cam phaser at engine start up when a difference between the first cam phaser position and the second cam phaser position is greater than a predetermined difference. A method for controlling an engine is also provided.
Abstract:
In a control apparatus and a control method for a variable mechanism, when a predetermined condition is fulfilled, a movable member (3) is driven until an engagement portion (31) contacts one restriction member (22), and the absolute position of the movable member (3) when it is determined that displacement of the movable member (3) is stopped is learned, as a reference position. When supply of electric power is stopped, the absolute position of the movable member (3) is learned as an initial reference position. When electric power is supplied, the movable member (3) is driven from the initial reference position until the engagement portion (31) contacts the one restriction member (22), and a one-side displacement amount is calculated. If the one-side displacement amount is smaller than a one-side distance, it is determined that a foreign substance is caught in an area on a side of a site corresponding to the one restriction member (22) in a movable range.
Abstract:
A method is described for monitoring a camshaft adjustment of an internal combustion engine in a first operating mode, in which, depending on a time characteristic of an actual value of the angular position of the camshaft adjustment and a time characteristic of a first setpoint value of the angular position of the camshaft adjustment, a decision is made that there are errors in the camshaft adjustment, the decision also depending on a time characteristic of a second setpoint value of the angular position of the camshaft adjustment, the first setpoint value and the second setpoint value each being ascertained at the same operating point of the internal combustion engine, and the first setpoint value for operating the internal combustion engine being ascertained in the first operating mode and the second setpoint value for operating the internal combustion engine being ascertained in a second operating mode.
Abstract:
A synchronization device for an engine is provided that has a first active sensor and a second active sensor. The first active sensor is adapted to determine an angular position of a first shaft and the second active sensor is adapted to determine the angular position of a second shaft. The first active sensor and the second active sensor are adapted to provide information on the state of the angular position of the first shaft and the second shaft or the angular position of the first shaft and the phase position between the first shaft and the second shaft to the control device. In addition, the control device is adapted to provide a control signal for setting a given phase difference between the first and the second shaft.
Abstract:
A timing arrangement for an internal combustion engine includes a timing connection having first and second connection features, each of which include respective properties wherein the second property is greater than the first property. A first timing wheel is fixed for rotation with a crankshaft of the engine. The first timing wheel includes first and second adjacent teeth, wherein the first and second adjacent teeth respectively include first and second widths, which correspond to the first and second connection features, respectively.