Abstract:
Methods and systems are provided for catalyst control. In one example, a method may include controlling an air-fuel ratio downstream of a catalyst by adjusting fuel injection. The fuel injection is adjusted based on control parameters updated online through system identification at a point of feedback control instability.
Abstract:
Various approaches are described for air-fuel ratio control in an engine. In one example, a method include adjusting fuel injection from an anticipatory controller responsive to exhaust oxygen feedback of an exhaust gas sensor positioned upstream of an exhaust catalyst, the anticipatory controller including a first integral term and a second integral term, the second integral term correcting for past fuel disturbances. In this way, it is possible to provide fast responses to errors via the anticipatory controller, while corrected known past fueling errors, on average, via the second integral term.
Abstract:
Various systems and methods are provided for controlling a wastegate in the presence of a degraded wastegate valve sensor. In one example, responsive to feedback from a wastegate valve sensor being unavailable, a wastegate valve is moved to an at least partially open position in part via exhaust pressures responsive to a desired boost being within a first range. Responsive to feedback from the wastegate valve sensor being unavailable, the wastegate valve is moved toward a fully closed position at a rate responsive to boost pressure dynamics responsive to the desired boost being within a second, different range.
Abstract:
Various methods and systems for an engine driving an electrical power generation system are provided. In one embodiment, an example method for an engine driving an electrical power generation system includes adjusting an engine speed in response to a relationship between oxygen and fuel while maintaining a power transmitted to the electrical power generation system.
Abstract:
An engine control apparatus which may be employed in automotive vehicles. The engine control apparatus is equipped with at least one of a combustion parameter or a controlled variable arithmetic expression. The combustion parameter arithmetic expression defines combustion conditions of the engine needed to achieve required values of engine output-related values such as exhaust emissions. The controlled variable arithmetic expression defines how to operate actuators for an operation of the engine to meet desired combustion conditions of the engine. The use of the combustion parameter or controlled variable arithmetic expression achieves simultaneous agreement of the engine output-related values with required values without mutual interference between combustion parameters associated with the combustion conditions. The engine control apparatus also works to correct target values of fuel injection-related combustion parameters based on a response delay of an air-related combustion parameter, thereby ensuring the accuracy in achieving required values of the engine output-related values.
Abstract:
A control device used for an internal combustion engine and capable of determining an actuator operation amount is provided. The control device includes a computation element that uses engine status amounts to compute the actuator operation amount. The computation element uses a model that includes a plurality of submodels arranged in a hierarchical sequence. The computation element computes the actuator operation amount by using a parameter calculated by the lowest level submodel and changes the number of higher-level submodels to be used in combination with the lowest level submodel in accordance with the operation status of the internal combustion engine.
Abstract:
Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.
Abstract:
Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initial value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.
Abstract:
In a method for the lambda control in an internal combustion engine with at least one catalytic converter, with the exhaust system being provided with front and rear lambda control circuits lambda with at least one rear oxygen sensor downstream in reference to the catalytic converter, with an output signal of the rear oxygen sensor being processed by the rear lambda control circuit, a difference value being formed to a rear target lambda value, and an actuating variable being formed acting on the target lambda value of the front lambda control circuit it is provided that after a change of the algebraic sign of the difference value a balanced oxygen amount is determined for a time interval since the sign change from the oxygen amount entered into and removed from the catalytic converter and the actuating variable of the rear lambda control circuit being selected depending on the balanced oxygen amount.
Abstract:
A device for controlling the exhaust-gas turbocharging of an internal combustion engine having an exhaust-gas turbocharging device, has an estimated value unit for determining a mass flow through a turbine system, a regulating unit for determining a regulating exhaust-gas back pressure as a function of a nominal charge pressure and an actual charge pressure, and also a unit for generating at least one actuating signal for at least one actuator of the turbine system as a function of the regulating exhaust-gas back pressure and of the mass flow through the turbine system, wherein the estimated value unit has a turbine system model for determining an estimated overall efficiency of the turbine system and a model for determining an estimated overall efficiency of a compressor system having at least two compressors, and wherein the regulating unit is set up to determine the regulating exhaust-gas back pressure using the estimated overall efficiencies