Abstract:
An inductively heatable susceptor for use with an inductively heated aerosol-generating device or system includes an open-porous inductively heatable ceramic material configured to hold an aerosol-forming liquid and configured to heat the aerosol-forming liquid under the influence of an alternating electromagnetic field. A cartridge for use with an aerosol-generating device includes an aerosol-forming liquid and a susceptor. An aerosol-generating device includes a susceptor.
Abstract:
To provide a superheated steam treatment apparatus capable of efficiently treating an object by superheated steam containing a high concentration of hydroxyl radicals. The superheated steam treatment apparatus includes an induction heating unit 4 configured to generate superheated steam by induction heating saturated stream, a treatment chamber 5 configured to allow the superheated steam generated by the induction heating unit 4 to be introduced thereinto, and a discharge treatment unit 6 located in the treatment chamber 5 and configured to treat the introduced superheated steam by discharge. The discharge treatment unit 6 has a frame serving as a support for the discharge treatment unit, a discharge electrode located at an upper part of the frame, a mesh-like opposite electrode located below the discharge electrode, and a high-frequency power source configured to supply high-frequency, high-voltage power between the discharge electrode and the opposite electrode to cause the discharge, whereby an object immediately below the opposite electrode is allowed to be treated by the superheated steam having an increased hydroxyl radical concentration due to the discharge.
Abstract:
A system for generating steam supplies of coal another material to one or more processing chambers. Each processing chamber includes a plasma arc torch that heats the material in the presence of water and a treatment gas at an extremely high temperature. A product gas stream is delivered from each processing chamber to a heat recovery steam generator (HRSG). Each HRSG generates steam that is used to drive a steam turbine. The processing chambers and HRSGs are fluidly connected so that the product gas streams moves from a processing chamber, to a HRSG, to another processing chamber, and then to another HRSG, etc. Within any of the HRSGs, or after the final HRSG, water in the product gas may condense to liquid water that may be redirected to any of the processing chambers. In addition, CO2 from the final HRSG may be redirected into any of the processing chambers to facilitate further reactions in the chambers.
Abstract:
This invention provides a fluid heating device that is free from breakage even though a conductor tube is transformed due to being heated. Concretely, this invention is provided with an electrical connecting member that constitutes a short circuit by electrically connecting each of required portions of the conductor tube, and uses the electrical connecting member that is transformable in accordance with a transformation resulting from a temperature change of the conductor tube.
Abstract:
A small steam generator uses a cylindrical steam generation vessel having a steam generation portion formed to store an amount of water for generating steam and a steam passage portion formed on the upper end of the steam generation portion for spouting steam generated in the steam generation portion. A heater element is disposed within the steam generation vessel, and an induction heating coil is wound around the periphery of the steam generation vessel for energizing the heater element. The heater element is energized by supply of electric power to the heating coil so that steam generated by boiling of the water in the steam generation portion spouts upward from the steam passage. In the steam generator, a steam discharge duct is mounted on the upper end of the steam passage for receiving the steam spouting upward from the steam passage and to discharge it in a lateral direction such that drops of hot water adhered to a ceiling surface of the discharge duct fall and re-circulate back into the steam generation part.
Abstract:
An energy efficient heat pump system capable of operating in extreme low and high temperature environments. The heat pump system includes an evaporator, a heater operatively associated with the evaporator, compressor and condenser. In an exemplary embodiment, the heat pump system may further include a plasma pulse-spark system to facilitate removal of scale deposits. The heater heats an environmental medium prior to the environmental medium exchanging energy with a refrigerant located in an evaporator coil of the evaporator in order to maintain a predetermined minimum temperature differential between the environmental medium when it contacts the evaporator coil and the refrigerant when located in the evaporator coil. The system allows efficient operation at low temperatures.
Abstract:
A liquid processing system is able to purify liquid such as water using an electromagnetic heater. The system, in one embodiment, includes a main boiler, a bottom boiler, a heating element, and a heating coil. The main boiler is structured to have a cylindrical shape and is configured to separate purified liquid from incoming liquid. The bottom boiler, configured to couple to the main boiler, holds at least a portion of incoming liquid for purification process. While the heating coil, which is situated adjacent to the heating element, is able to generate a magnetic field in accordance with an electrical current, the heating element produces heat needed for purification process in response to the magnetic field.
Abstract:
An energy efficient heat pump system capable of operating in extreme low and high temperature environments. The heat pump system includes an evaporator, a heater operatively associated with the evaporator, compressor and condenser. In an exemplary embodiment, the heat pump system may further include a plasma pulse-spark system to facilitate removal of scale deposits. The heater heats an environmental medium prior to the environmental medium exchanging energy with a refrigerant located in an evaporator coil of the evaporator in order to maintain a predetermined minimum temperature differential between the environmental medium when it contacts the evaporator coil and the refrigerant when located in the evaporator coil. The system allows efficient operation at low temperatures.
Abstract:
The present invention provides a glow discharge cell comprising an electrically conductive cylindrical vessel having a first end and a second end, and at least one inlet and one outlet; a hollow electrode aligned with a longitudinal axis of the cylindrical vessel and extending at least from the first end to the second end of the cylindrical vessel, wherein the hollow electrode has an inlet and an outlet; a first insulator that seals the first end of the cylindrical vessel around the hollow electrode and maintains a substantially equidistant gap between the cylindrical vessel and the hollow electrode; a second insulator that seals the second end of the cylindrical vessel around the hollow electrode and maintains the substantially equidistant gap between the cylindrical vessel and the hollow electrode; a non-conductive granular material disposed within the gap, wherein the non-conductive granular material (a) allows an electrically conductive fluid to flow between the cylindrical vessel and the hollow electrode, and (b) prevents electrical arcing between the cylindrical vessel and the hollow electrode during a electric glow discharge; and wherein the electric glow discharge is created whenever: (a) the glow discharge cell is connected to an electrical power source such that the cylindrical vessel is an anode and the hollow electrode is a cathode, and (b) the electrically conductive fluid is introduced into the gap.
Abstract:
A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.