Abstract:
The boiler (1) according to an aspect of the present invention is provided with a boiler main body (3) and a steel support frame (5) that suspends and supports the boiler main body (3). The boiler main body (3) is provided with: a furnace wall (11) composed of water pipes (15) and plate-like fins (16) arranged in an alternating manner; an internal element (4) housed inside the furnace wall (11); and a buffering mechanism (20) configured to attenuate vibration energy when relative displacement, of the internal element (4) with respect to the furnace wall (11), occurs that exceeds a predetermined value. The buffering mechanism (20) is disposed between the furnace wall (11) and the internal element (4) in the main vibration direction of the internal element (4), and the load on the buffering mechanism (20) caused by interference is transmitted to the fins (16).
Abstract:
A steam generator apparatus for generating steam from a feedwater inlet stream including impurities is disclosed. The apparatus includes a tubing circuit in communication with an inlet for receiving the feedwater stream, the tubing circuit having a substantially unrifled bore defined by a metal wall, and a heat source operable to deliver a heat flux to the feedwater stream through the metal wall of the tubing circuit, the heat flux being operable to cause evaporation of feedwater within the tubing circuit and to produce an outlet stream at an outlet of the tubing circuit, the outlet stream includes a steam portion and liquid phase portion, the steam portion being greater than about 80% of the outlet stream by mass, the steam portion providing sufficient cooling of the metal wall to maintain a wall temperature at less than a threshold temperature associated with safe operation of the steam generator apparatus.
Abstract:
An object is to provide a heat exchanger including a resonance-prevention baffle plate disposed between a plurality of heat transfer tubes, the resonance-prevention baffle plate being obtainable and mountable readily and at lower cost. A heat exchanger 10 disposed in a flow passage of combustion gas of a boiler or the like includes: a plurality of heat transfer tubes 14 disposed in parallel and spaced from one another, an axial direction of each heat transfer tube intersecting with the combustion gas g, inside a duct wall 12 forming the flow passage of the combustion gas g; and a resonance-prevention baffle 16 having a plate shape and disposed along the combustion gas g and between the heat transfer tubes 14, the resonance-prevention baffle including a metal foil sheet 18.
Abstract:
A steam dispersion system including insulation is disclosed. The steam dispersion system may include a steam dispersion tube with at least one opening defined on an outer surface of the steam dispersion tube and a hollow interior. The insulation covers at least a portion of the steam dispersion tube, the insulation defining an opening aligned with the opening of the steam dispersion tube, wherein the insulation meets 25/50 flame/smoke indexes for UL723/ASTM E-84 and has a thermal conductivity less than about 0.35 Watts/m-K (2.4 in-hr/ft^2 deg F.). A nozzle defining a throughhole may be placed within the opening of the steam dispersion tube, the throughhole being in fluid communication with the hollow interior of the steam dispersion tube to provide a steam exit.
Abstract:
A high-temperature piping product is configured from a plurality of primary pipe members and a welding material. The primary pipe members are each made from an Ni-based forged alloy containing: Ni, Al, and at least one of Mo and W. The total content of the Mo and the W being 3-8 mass %. The Ni-based forged alloy exhibiting a γ′-phase dissolution temperature of from 920 to 970° C., and the γ′ phase being precipitated in 30 volume % or more in a temperature range of from 700 to 800° C. The welding material is made from an Ni-based cast alloy having a cast structure formed by welding. The Ni-based cast alloy containing: Ni, Al, and at least one of Mo and W, the total content of the Mo and the W being 9-15 mass %, the Ni-based cast alloy exhibiting a γ′-phase dissolution temperature of from 850 to 900° C.
Abstract:
A method for assembling a combined cycle power generation system includes coupling a gas turbine in flow communication with a heat recovery steam generator (HRSG). The method also includes coupling a steam turbine in flow communication with the HRSG via at least one steam conduit. The method further includes coupling at least one heating element to a portion of the at least one steam conduit. The method also includes operatively coupling at least one controller to the at least one heating element. The method further includes programming the at least one controller to vary a rate of temperature change in the portion of the at least one steam conduit.
Abstract:
A method for assembling a combined cycle power generation system includes coupling a gas turbine in flow communication with a heat recovery steam generator (HRSG). The method also includes coupling a steam turbine in flow communication with the HRSG via at least one steam conduit. The method further includes coupling at least one heating element to a portion of the at least one steam conduit. The method also includes operatively coupling at least one controller to the at least one heating element. The method further includes programming the at least one controller to vary a rate of temperature change in the portion of the at least one steam conduit.
Abstract:
A steam dispersion system including insulation is disclosed. The steam dispersion system may include a steam dispersion tube with at least one opening defined on an outer surface of the steam dispersion tube and a hollow interior. The insulation covers at least a portion of the steam dispersion tube, the insulation defining an opening aligned with the opening of the steam dispersion tube, wherein the insulation meets 25/50 flame/smoke indexes for UL723/ASTM E-84 and has a thermal conductivity less than about 0.35 Watts/m-K (2.4 in-hr/ft̂2 deg F). A nozzle defining a throughhole may be placed within the opening of the steam dispersion tube, the throughhole being in fluid communication with the hollow interior of the steam dispersion tube to provide a steam exit.
Abstract:
A boiler according to the present invention includes: a plurality of heat transfer tubes arranged to form a cylindrical shape between an upper header and a lower header to constitute a heat transfer tube row; a boiler body cover of a cylindrical shape provided between the upper header and the lower header so as to surround the heat transfer tube row; and a heat insulating material provided to a predetermined region of a space between the heat transfer tube row and the boiler body cover.