Abstract:
A solar panel support apparatus comprising: a support frame for holding the solar panel; a support post pivotally connected to the support frame at a post pivot connection and anchored to an adjacent supporting surface, the support post for positioning the support frame above the supporting surface; and a linear actuator coupled at a proximal end to the support post by a support pivot connection and at a distal end by a frame pivot connection with the support frame, the post pivot connection and the frame pivot connection spaced apart from one another on the support frame; wherein a change in a length of the linear actuator results in pivoting of the support frame about the post pivot connection.
Abstract:
A pressure-driven solar photovoltaic panel automatic tracking device includes a photovoltaic panel, a rotating shaft, a rotating wheel, a transmission component, a first counterweight, a second counterweight, a bellow tube, and a gas supply mechanism; the photovoltaic panel is fixed to the rotating shaft, the rotating wheel is fixed to the rotating shaft, the rotating wheel is provided with the transmission component, and both ends of the transmission component are respectively connected to the first counterweight and the second counterweight; the first counterweight is connected to the bellow tube, and the bellow tube is connected to the gas supply mechanism; and the bellow tube is expanded and contracted by controlling the gas supply mechanism, so that the first counterweight moves in the vertical direction, thereby driving the rotating wheel to rotate, so as to realize the automatic tracking of the sunlight by the photovoltaic panel.
Abstract:
A dual axis solar array tracker for supporting a plurality of solar energy harvesting elements at a plurality of solar collector nodes. Two perpendicular axes of movement, specifically a rotation axis at a rotatable transverse beam and a tilt axis relative to the axis of the transverse beam, enable accurate orientation in a stable configuration. The dual axis design of the solar tracker enables the movement of solar collectors such that they can be directed towards the sun wherein incoming solar rays are perpendicular to the solar cell element of the solar collector to optimize collection of solar radiation. The present solar tracker array also enables integrated solar, electrical and/or thermal energy cogeneration.
Abstract:
Solar trackers that may be advantageously employed on sloped and/or variable terrain to rotate solar panels to track motion of the sun across the sky include bearing assemblies and other mechanical features configured to address mechanical challenges posed by the sloped and/or variable terrain that might otherwise prevent or complicate use of solar trackers on such terrain.
Abstract:
A solar tracking device includes a base, a first driving member, a turntable, a translating plate, a second driving member and a solar panel stand. The first driving member includes a first rotary gear. The turntable has an outer gear ring and a track. The outer gear ring is engaged with the first rotary gear to drive the turntable to rotate with respect to the base. The translating plate is accommodated in the track. The second driving member includes a second rotary gear installed at the translating plate and engaged with the track to drive the translating plate to move horizontally along the track. The solar panel stand includes a main frame and first and second link rod frames. The main frame is driven by the first and second link rod frames to adjust the angle of elevation with respect to the translating plate.
Abstract:
A solar-tracking photovoltaic (PV) system having a motor drive vertically below a PV module, is described. In an example, the motor drive rotates a torque tube holding the PV module. The motor drive may include a gearbox having a worm drive, and a gearmotor having an offset gear. The offset gear may be coupled to a planetary gear train along an axis of a worm of the worm drive, and the offset gear may be coupled to a motor along a shaft axis offset vertically below the worm axis. Accordingly, the motor may be offset vertically below the worm drive, i.e., farther from the PV laminate than the worm drive, and a rotational clearance for the PV laminate may be increased.
Abstract:
A solar energy collection system can include support devices made with bearings. Such bearings can include an inner partially toroidal surface for sliding contact and support of an outer surface of a torque tube. The toroidal surface can be made with a single radius of curvature or multiple radiuses of curvature and cylindrical portions. The bearings can include connectors for connecting the bearing members to a support housing. The connectors can be tool-less connectors.
Abstract:
A multi-scissor jack-operated single-shaft solar tracking apparatus. A scissor jack is provided at regular intervals on a rotation beam of the single-shaft tracking solar support, thereby forming a multi-drive rotation. Lifting screw of each scissor jack is connected by a drive shaft so as to be lifted in synchronization. One of the scissor jacks can be driven by a motor, and the lifting screws of the other scissor jacks are driven by the transmission shaft, thereby synchronously driving the rotation beam of the single-shaft tracking solar support to rotate. The scissor jacks can be driven by manpower, in order that the angle of the tracking solar support can be adjusted by hand.
Abstract:
A support system for a solar panel includes a triangular truss with connection points for mounting a photovoltaic module, and a cradle structure that supports the triangular truss and is connected to at least two side supports of the triangular truss. The cradle structure may be driven for rotation about an axis for tracking the sun and several cradle structures can be linked together for tracking movement using a buried linkage system. The truss may also be foldable for ease of transportation and storage.
Abstract:
A solar energy collection system can include support devices made with bearings. Such bearings can include an inner partially toroidal surface for sliding contact and support of an outer surface of a torque tube. The toroidal surface can be made with a single radius of curvature or multiple radiuses of curvature and cylindrical portions. The bearings can include connectors for connecting the bearing members to a support housing. The connectors can be tool-less connectors.