Abstract:
Methods and apparatus for a brace for attachment to a launch rail for a projectile for distributing loading of the projectile when supported by the launch rail. A height of the brace can be adjusted to distribute loading. In embodiments, a release mechanism can allow movement of a wear plate during launch of the projectile.
Abstract:
The invention relates to a ramp of a catapult and to a catapult. The catapult comprises a carriage (4) for fastening an aircraft (5). The carriage (4) is supported on a ramp (1). The ramp is formed of one or more ramp elements (1a-1m). The ramp element comprises four frame plates, namely two parallel side plates (20a, 20b), a top plate (21) and a bottom plate (22). The frame plates are separate pieces which are connected at fastening points (25) to each other by means of mechanical fastening elements (26).
Abstract:
The present disclosure relates to a launch system, a launch vehicle for use with the launch system, and methods of launching a payload utilizing the launch vehicle and/or the launch system. The disclosure can provide for delivery of the payload at a terrestrial location, an Earth orbital location, or an extraorbital location. The launch vehicle can comprise a payload, a propellant tank, an electrical heater wherein propellant, such as a light gas (e.g., hydrogen) is electrically heated to significantly high temperatures, and an exhaust nozzle from which the heated propellant expands to provide an exhaust velocity of, for example, 7-16 km/sec. The launch vehicle can be utilized with the launch system, which can further comprise a launch tube formed of at least one tube, which can be electrically conductive and which can be combined with at least one insulator tube. An electrical energy source, such as a battery bank and associated inductor, can be provided.
Abstract:
A cover for an empty rail missile launcher that can be used in flight. The cover is shaped to reflect radar signals transmitted by a radar transmitter away from the radar transmitter to reduce detectibility by radar. The cover may also be coated with radar absorbent material to reduce detectibility by radar. Hangers are used to mount the cover to the rail missile launcher. The cover is provided with a grounding mechanism to dissipate precipitation static. A restraint mechanism is provided to prevent the cover from inadvertently sliding off the rail missile launcher.
Abstract:
A method of launching a catapult, a catapult and a locking device for a catapult. The catapult comprises a carriage for fastening an aircraft. The carriage can be provided with a high acceleration by directing a launching force generated by a launching device thereto. The carriage can be held at a launching position by means of the locking device. The catapult further comprises a takeoff damper that generates a damping force having a direction opposite relative to the launching force. Accordingly, the takeoff damper restricts the acceleration of the carriage at the initial launching moments.
Abstract:
An electrical connector for testing of a missile launch rail is provided. A stationary housing is combined with a coupling ring to form an outer housing. An internal plunger is housed in the outer housing and spans the length of the outer housing. The stationary housing anchors to the missile launch rail, while the coupling ring is free to rotate about the internal plunger. The coupling ring is rotated via a hand grasp. The coupling ring rotation translates into forward and aft movement of the pin assembly. The connector provides forward and backward stops for limiting pin insertion and extraction moves to desired distances. Rotation via triple-start threads readily overcomes insertion and extraction resistance of a bulky multi-pin assembly and provides a smooth and controlled electrical connection. The size of the connector approaches that of a small conventional military standard 38999 series III connector.
Abstract:
A method of launching a catapult, a catapult and a locking device for a catapult. The catapult comprises a carriage (4) for fastening an aircraft (5). The carriage (4) can be provided with a high acceleration by directing a launching force (F1) generated by a launching device thereto. The carriage (4) can be held at a launching position (6) by means of the locking device (9). The catapult further comprises a takeoff damper (34) that generates a damping force (F2) having a direction opposite relative to the launching force. Accordingly, the takeoff damper (34) restricts the acceleration of the carriage (4) at the initial launching moments.
Abstract:
A method of launching a catapult, a catapult and a locking device for a catapult. The catapult comprises a carriage (4) for fastening an aircraft (5). The carriage (4) can be provided with a high acceleration by directing a launching force (F1) generated by a launching device thereto. The carriage (4) can be held at a launching position (6) by means of the locking device (9). The catapult further comprises a takeoff damper (34) that generates a damping force (F2) having a direction opposite relative to the launching force. Accordingly, the takeoff damper (34) restricts the acceleration of the carriage (4) at the initial launching moments.
Abstract:
A launcher platform including a support structure and a number of rails mounted on the support structure for supporting missles thereon, each adjacent rail elevated above the other rails to accommodate additional missles and different type missles while maintaining low center of gravity.
Abstract:
A combined defense and navigational system on a naval vessel is disclosed. The disclosed system includes a track-while-scan pulse radar which is controlled to provide either navigational information or tracking information on selected targets. Additionally, the disclosed system includes a plurality of guided missiles, each of which may be vertically launched and directed toward intercept of a selected target either by commands from the track-while-scan radar or from an active guidance system in each such missile. The invention herein described was made in the course of or under a contract or subcontract thereunder, with the Department of Defense.