Abstract:
An electrode formed by molding a semiconductor device with resin. The electrode comprises: a first resin mold portion formed on a front surface of the semiconductor device and having a first thickness (t1); a second resin mold portion formed on a back surface of the semiconductor device and having a second thickness (t2) greater than the first thickness; and an exposed portion formed in a part of the first resin mold portion corresponding to an end of the semiconductor device.
Abstract:
Methods for the near real-time detection of airborne analytes using imprinted micelles and electrochemical cells are described. The methods demonstrate selectivity to the imprinted micelles over others that are of similar size and configuration and are compatible with airborne aerosol sampling techniques. The detection method can be used to monitor and detect any airborne analyte, including pathogens (such as SARS-CoV-2), toxins, proteins, organic molecules, inorganic particles, chemicals, explosive particles, and environmental pollutants.
Abstract:
The invention relates to a closure for an electrochemical reaction vessel, in particular a potentiostat, the closure comprising: a holder for holding electrodes arranged at an inner side of the closure such that, when the closure is attached to a reaction vessel, electrodes held by the holder extend into an interior space of the reaction vessel and into an electrolyte contained in the reaction vessel; and a plurality of contacts arranged at an outer side of the closure for providing electrical contacts with the electrodes.
Abstract:
A single use pH sensor housing for a single use container is provided. The single use pH sensor housing includes a compartment configured to house a single use pH sensor. In one embodiment, the single use pH sensor housing comprises an actuator configured, when actuated, to transition the single use pH sensor from a storage position to a deployed position. In the storage position, the pH sensor is in fluidic contact with a buffer solution. In the deployed position, the single use pH sensor is in fluidic contact with an interior of the single use container. During the transition from the storage position to the deployed position, the buffer solution moves from a sensor portion of the compartment to a storage portion of the compartment such that the buffer solution is isolated from contact with the interior of the single use container.
Abstract:
An apparatus for automatically conditioning a patch plate and a plenum of an electrophysiology measurement system is provided. An arm is linearly movable between a non-operative position and an operative position. An end effector mounted to one side of the arm is configured to condition the patch plate. Another end effector mounted to an opposite side of the arm is configured to condition the plenum. A linear actuator is coupled to the arm and is configured to drive movement of the arm between the operative position and the non-operative position. When the arm is positioned in the operative position, the arm is situated between the patch plate and the plenum.
Abstract:
An apparatus for automatically conditioning a patch plate and a plenum of an electrophysiology measurement system is provided. An arm is linearly movable between a non-operative position and an operative position. An end effector mounted to one side of the arm is configured to condition the patch plate. Another end effector mounted to an opposite side of the arm is configured to condition the plenum. A linear actuator is coupled to the arm and is configured to drive movement of the arm between the operative position and the non-operative position. When the arm is positioned in the operative position, the arm is situated between the patch plate and the plenum.
Abstract:
A retractable assembly, comprising: a housing; a media connection with complementary connecting means; an immersion tube; and a probe provided in the immersion tube. The probe has a probe head on its end facing the medium, wherein, in the service position, the probe head is arranged within a treatment chamber formed in the housing, wherein the immersion tube is divided into three regions, and, indeed, a upper region facing away from the containment, a middle region, on which a sealing system is provided, and a lower region facing the containment, wherein the sealing system is so embodied that in no position of the immersion tube does an exchange of medium or impurities from the drive to the treatment chamber, or vice versa, occur.
Abstract:
An adjustable insertion assembly for an electrochemical sensor includes an electrode holder to receive the sensor, having a distal aperture to permit process fluid to contact the sensor. A receptacle slidably receives the holder, for a sliding range of motion extending from fully inserted to fully retracted positions. An open distal end portion of the receptacle extends through a wall of a process fluid vessel, so that the aperture is open to the process fluid when fully inserted, and closed when fully retracted. A leverage member is releasably movable relative to the receptacle, and moves with a captured extension. An abutment of the receptacle engages the extension so that movement of the leverage member in opposite directions alternately clamps and releases the electrode holder relative to the receptacle to substantially prevent and permit movement at substantially any point within the range of movement.
Abstract:
A retractable assembly for immersion-, flow- and annex-measuring systems in analytical process technology for measuring at least one measured variable of a medium in a process containment, comprising an essentially cylindrical housing having a housing interior; an immersion tube, which is axially movable between a retracted service position in the housing and a process position extended from the housing. In the service position, the immersion tube is positioned in the housing interior; a closure element on an end region of the immersion tube facing the medium for sealing off the housing interior from the process containment when the immersion tube is located in the service position, and a proximity detector in or on the end region of the housing facing the medium for detecting the closure element in the service position.
Abstract:
The present invention relates to a calibration method of a sensor unit connected to a reaction vessel, wherein the sensor unit comprises at least one sensor device configured to be calibrated, at least one compartment containing a calibrating agent, and a housing. The method comprising inserting a sensitive element of the at least one sensor device into a compartment of the sensor unit containing a calibrating agent, withdrawing the sensitive element from the compartment; inserting the sensitive element into the reaction vessel and locking the sensor device in position, wherein the steps of the method are irreversible.