Abstract:
A brushless DC motor (1) comprises a rotor comprising magnetic elements twining poles of the electric motor (1) and a control magnet comprising a number of pole pairs equal to three times that of the electric motor (1), a stator having electromagnetic excitation coils, at least one first and one second Hall-effect sensor (17, 17′) configured to detect predetermined angular positions of the rotor, and a control unit configured to apply a predetermined sequence of excitation signals to the coils, wherein the Hall-effect sensors are spaced apart by an angle greater than or equal to 10°, the first Hall-effect sensor (17) is used to determine the switching times of the excitation signals and the second Hall-effect sensor (17′) is used, in combination with the first Hall-effect sensor (17), to determine the direction of rotation of the rotor when the motor starts up, or vice versa.
Abstract:
A system for using a transparent conductive material layer for a knob interface is provided. The system comprises: the knob interface comprising a fixed base and one or more knob interface electrodes; the transparent conductive material layer configured to electrically couple the subset of the plurality of grid electrodes to the one or more knob interface electrodes; and a processing system. The processing system is configured to: drive the plurality of grid electrodes with one or more signals; receive one or more resulting signals based on driving the plurality of grid electrodes with the one or more signals; and perform one or more actions based on the one or more resulting signals.
Abstract:
Systems and methods for authenticating identification information are disclosed. For example, an Automated Teller Machine (ATM) may comprise a user interface. The user interface may comprise a card reader. The card reader may be configured for card rotation about an axis of a bank card. The user interface may be configured to receive card rotation input from a user. The ATM may comprise at least one memory storing instructions. The ATM may comprise at least one processor configured to execute the instructions to perform operations. The operations may comprise receiving identification information from the user. The operations may comprise receiving the card rotation input. The operations may comprise extracting a card rotation sequence from the card rotation input. When the card rotation sequence is within a predetermined threshold from a stored card rotation sequence corresponding to the identification information, the operations may comprise authenticating the user for an ATM operation.
Abstract:
A system for motion analysis includes a sensing device positioned at a knee joint of a bicycle rider, and an electronic device in communication with the sensing device. The electronic device is configured to receive, from the sensing device, a series of pieces of sensed data representing orientations of the sensing device at different times, to determine a motion trajectory of a knee of the rider based on the received pieces of sensed data, and to generate an estimation result regarding correctness of a riding posture of the rider based on the motion trajectory.
Abstract:
A centrifugal separator includes a frame and a drive member configured to rotate a rotating part in relation to the frame around an axis of rotation. The rotating part includes a spindle and a centrifuge rotor enclosing a separation space. The rotating part is supported by the frame by at least one bearing device. The centrifugal separator further includes a system for detecting rotation of the rotating part. The system includes at least one first type of sector each occupying a first length of the perimeter of a member arranged for rotation with the rotating part, and at least one second type of sector each occupying a second length of the perimeter of the member arranged for rotation. The at least one second type of sector is spaced apart from the at least one first type of sector. The second length is different compared to the first length. The at least one first and second types of sectors are irregularly spaced around the perimeter of the member arranged for rotation. The system further includes an inductive sensor arranged to detect the at least one first and second types of sectors and give rise to a binary pulse sequence upon rotation of the member arranged for rotation. The temporal widths of the binary pulses correspond to the lengths of the at least one first and the at least one second types of sectors, respectively.
Abstract:
An absolute high resolution linear segment or revolution counter as a one-chip-solution with self sustained, economical intermediate solutions, preferably as absolute magnetic multi turn, having a Wiegand element for counting the revolutions or segments, respectively and for the energy supply of the counter and memory as well as processing electronics, whereby the additional sensor for the fine resolution and a μ-controller are part of the overall IC is disclosed.
Abstract:
Three light emitting elements and one light receiving element are provided on a surface of a substrate. An arithmetic processing portion of a signal processing circuit separates three reflected light signals from a light detection signal from the light receiving element. The arithmetic processing portion calculates a square sum of the difference between the entire waveforms of the reflected light signals while the reflected light signal is shifted. The arithmetic processing portion calculates a phase difference between the reflected light signals on the basis of a shift amount with which the calculated value is minimum. On the basis of similar processing, the arithmetic processing portion calculates a phase difference between the reflected light signals. The arithmetic processing portion identifies a movement direction of a detection object on the basis of the phase differences.
Abstract:
A method and a system of determining a driving direction of a vehicle traveling at a low speed. The method includes determining whether the vehicle is in one of three states: (1) an uphill state in which the vehicle is located on an upward sloping surface, (2) a downhill state in which the vehicle is located on a downward sloping surface, and (3) a flat surface state in which the vehicle is located on a flat surface. The method also includes obtaining information from a plurality of vehicle sensors and determining a direction of movement of the vehicle based upon the determined state of the vehicle and information from the plurality of vehicle sensors.
Abstract:
In a method for ascertaining a rotational direction of a rotating body, one rotational direction and one rotational speed value which indicates the rotational frequency of the rotating body are ascertained in each of multiple measurements. The rotational speed values of the multiple measurements are compared to each other, and a rotational direction of the rotating body is ascertained from the measured rotational directions and the comparison of the rotational speed values.
Abstract:
A device and method for measuring a fluid flow velocity and direction. The device includes: a modulator for modulating an incident signal from a fiber optical arrangement. The modulator includes an encoder resulting in a modulated signal having at least a first portion, a second portion and a third portion for each complete rotation of the encoder. The device further includes a processor for determining the fluid flow velocity and direction based on at least the first portion, the second portion and the third portion of the modulated signal. The method includes modulating an incident beam to have a first portion, a second portion and a third portion for each rotation of an encoder and processing the modulated signal to determine a fluid flow velocity and direction.