Abstract:
According to an embodiment of the present invention, a system dynamically captures and stores an image based on the context of the image being captured. Initially, an image capture device receives and analyzes an image to determine a first set of one or more attributes associated with the image. A processor compares the first set of attributes associated with the image with a second set of one or more pre-defined attributes associated with an image context indicating preferences for image capture, and, based on the results of the comparing, instructs the image capture device to store the image. Embodiments of the present invention further include a method and computer program product for capturing an image based on the context of the image in substantially the same manner described above.
Abstract:
Techniques describe computing computer vision (CV) features based on sensor readings from a sensor and detecting macro-features based on the CV features. The sensor may include a sensor element array that includes a plurality of sensor elements. The sensor may also include in-pixel circuitry coupled to the sensor elements, peripheral circuitry and/or a dedicated microprocessor coupled to the sensor element array. The in-pixel circuitry, the peripheral circuitry or the dedicated microprocessor may include computation structures configured to perform analog or digital operations representative of a multi-pixel computation for a sensor element (or block of sensor elements), based on sensor readings generated by neighboring sensor elements in proximity to the sensor element, and to generate CV features. The dedicated microprocessor may process the CV features and detect macro-features. Furthermore, in certain embodiments, the dedicated microprocessor may be coupled to a second microprocessor through a wired or wireless interface.
Abstract:
An apparatus includes a hardware sensor array including a plurality of pixels arranged along at least a first dimension and a second dimension of the array, each of the pixels capable of generating a sensor reading. A hardware scanning window array includes a plurality of storage elements arranged along at least a first dimension and a second dimension of the hardware scanning window array, each of the storage elements capable of storing a pixel value based on one or more sensor readings. Peripheral circuitry for systematically transfers pixel values, based on sensor readings, into the hardware scanning window array, to cause different windows of pixel values to be stored in the hardware scanning window array at different times. Control logic coupled to the hardware sensor array, the hardware scanning window array, and the peripheral circuitry, provides control signals to the peripheral circuitry to control the transfer of pixel values.
Abstract:
This disclosure provides a retinal prosthetic method and device that mimics the responses of the retina to a broad range of stimuli, including natural stimuli. Ganglion cell firing patterns are generated in response to a stimulus using a set of encoders, interfaces, and transducers, where each transducer targets a single cell or a small number of cells. The conversion occurs on the same time scale as that carried out by the normal retina. In addition, aspects of the invention may be used with robotic or other mechanical devices, where processing of visual information is required. The encoders may be adjusted over time with aging or the progression of a disease.
Abstract:
A method for checking the visibility of a camera for surroundings of an automobile is proposed which includes receiving a camera image and a step of dividing the camera image into a plurality of partial images. A visibility value is determined based on a number of objects detected in the particular partial image. A visibility probability is subsequently determined for each of the partial images based on the blindness values and the visibility values of the particular partial images.
Abstract:
An image sensor having an output of an integral image is provided. The image sensor includes a pixel circuit, a line accumulator, and a volume accumulator. The pixel circuit includes a plurality of pixels for capturing pixel values of the pixels. The line accumulator is used for accumulating the pixel values of the pixels from a first pixel to a target pixel in a target pixel line of the image so as to obtain an accumulated line pixel value. The volume accumulator is used for adding the accumulated line pixel value output by the line accumulator to an integral pixel value of the pixel corresponding to the target pixel in a previous pixel line of the target pixel line, and using an adding result as the integral pixel value of the target pixel, so as to output the integral pixel value of the target pixel to form an integral image.
Abstract:
The present invention is a method and apparatus for performing neighborhood processing operations on an n dimensional processing plane. In a simple, two dimensional, example, an M by N processing plane is successively scanned by rows. The output information from each row is presented on column lines. The analog data resulting from a fixed number of successive scans are temporarily held in a multi-stage analog buffer. A computing array is configured to perform the neighborhood operations or other limited co-operand operations on the shifted data. The computing array examines information from a slice made up of selected numbers of successive rows of the entire array, performs the operations on that portion, and provides a series of output signals representative of the result. The analog buffer is pipelined; information from a new row represents only a single row of new data and the contents of the latch stage containing the oldest information is replaced with this new analog data, causing the information from the transducers of the oldest row to be lost. The operation is then performed on the new slice. This sequence is repeated until all representative slices of the total array have had the neighborhood operations performed on them.
Abstract:
A synapse matrix and a device for optical programming are contained integrated in thin-film technology in a common substrate (1). The synapses consist of photoelectric elements. The device for optical programming consists, for example, of a liquid crystal screen or an arrangement of electroluminescent diodes. It is within the scope of the invention that neurons in thin-film technology, contained in the neuron network, are also integrated on the substrate. The neuron network can be used especially for pattern recognition.
Abstract:
A system and methodologies for neuromorphic vision simulate conventional analog NM system functionality and generate digital NM image data that facilitate improved object detection, classification, and tracking.
Abstract:
An apparatus includes a hardware sensor array including a plurality of pixels arranged along at least a first dimension and a second dimension of the array, each of the pixels capable of generating a sensor reading. A hardware scanning window array includes a plurality of storage elements arranged along at least a first dimension and a second dimension of the hardware scanning window array, each of the storage elements capable of storing a pixel value based on one or more sensor readings. Peripheral circuitry for systematically transfers pixel values, based on sensor readings, into the hardware scanning window array, to cause different windows of pixel values to be stored in the hardware scanning window array at different times. Control logic coupled to the hardware sensor array, the hardware scanning window array, and the peripheral circuitry, provides control signals to the peripheral circuitry to control the transfer of pixel values.