Abstract:
A substrate supporting and transferring apparatus and associated methods, the apparatus including a shuttle configured to move in a x-direction and a y-direction, the y-direction being perpendicular to the x-direction; a lower wedge block on the shuttle, the lower wedge block including a lower surface that is parallel with an upper surface of the shuttle and an upper surface that is inclined with respect to the lower surface of the lower wedge block; an upper wedge block on the lower wedge block, the upper wedge block including a lower surface that is parallel with the upper surface of the lower wedge block and an upper surface that is parallel with the upper surface of the shuttle; and a chuck on the upper wedge block, the chuck being configured to support a substrate.
Abstract:
A method for producing a display device includes locating a substrate, including a plurality of pixels, on a jig including a magnet; locating a plate formed of a magnetic material on the substrate to secure the substrate; and folding back an end portion of the substrate in a state where the substrate is held between the jig and the plate.
Abstract:
A carrier system is provided with a wafer stage which holds a mounted wafer and is also movable along an XY plane, a chuck unit which holds the wafer from above in a non-contact manner above a predetermined position and is vertically movable, and a plurality of vertical movement pins, which can support from below the wafer held by the chuck unit on the wafer stage when the wafer stage is positioned at the predetermined position above and can also move vertically. Then, flatness of the wafer is measured by a Z position detection system, and based on the measurement results, the chuck unit and the vertical movement pins that hold (support) the wafer are independently driven.
Abstract:
A carrier system is provided with a wafer stage which holds a mounted wafer and is also movable along an XY plane, a chuck unit which holds the wafer from above in a non-contact manner above a predetermined position and is vertically movable, and a plurality of vertical movement pins, which can support from below the wafer held by the chuck unit on the wafer stage when the wafer stage is positioned at the predetermined position above and can also move vertically. Then, flatness of the wafer is measured by a Z position detection system, and based on the measurement results, the chuck unit and the vertical movement pins that hold (support) the wafer are independently driven.
Abstract:
A clamping apparatus and method for maintaining a workpiece flatness during processing includes a base having a planar surface for receiving a first workpiece. Two sets of opposing clamping mechanisms are mounted to the base and include a clamp head at a distal end of a rod extending from a housing in removable overlapping relation to the first workpiece. Each set of the clamp heads are in opposing spaced relationship to each other defining a second workpiece area, and the clamp heads are configured to mate with a top surface of the first workpiece. A biasing member is coupled to each of the housings and apply a downward vertical force to the housings, rods, and the clamp heads for applying a downward vertical pressure to the first workpiece. The first workpiece is thereby discouraged from thermally expanding in a vertical direction and is thermally expandable horizontally along the planar surface.
Abstract:
In an embodiment, a chuck to support a solar cell in hot spot testing is provided. This embodiment of the chuck comprises a base portion and a support portion disposed above the base portion. The support portion is configured to support the solar cell above the base portion and to define a cavity between a bottom surface of the solar cell and the base portion that thermally separates a portion of the bottom surface of the solar cell from the base portion.
Abstract:
A cleaving system is described. The system can include a holding apparatus to retain a photovoltaic structure at a center section of a cleaving platform. The system can further include a contact apparatus to make contact with the photovoltaic structure and separate it into a plurality of strips. During operation, the system can activate an actuator to move the contact apparatus against the photovoltaic structure, thereby separating the photovoltaic structure into strips.
Abstract:
This invention relates to a pressure transmission apparatus for bonding a plurality of chips to a substrate. The pressure transmission apparatus includes a pressure body for applying a bonding force which acts in the bonding direction (B) to the chip. The pressure body has a first pressure side and an opposite second pressure side, both oriented to be transverse to the bonding direction (B). Fixing means are provided to attach to the periphery of the pressure transmission apparatus for fixing of the pressure transmission apparatus on a retaining body in the bonding direction (B). A sliding layer is provided for sliding motion of the pressure body transversely to the bonding direction (B).
Abstract:
A clamping apparatus and method for maintaining a workpiece flatness during processing includes a base having a planar surface for receiving a first workpiece. Two sets of opposing clamping mechanisms are mounted to the base and include a clamp head at a distal end of a rod extending from a housing in removable overlapping relation to the first workpiece. Each set of the clamp heads are in opposing spaced relationship to each other defining a second workpiece area, and the clamp heads are configured to mate with a top surface of the first workpiece. A biasing member is coupled to each of the housings and apply a downward vertical force to the housings, rods, and the clamp heads for applying a downward vertical pressure to the first workpiece. The first workpiece is thereby discouraged from thermally expanding in a vertical direction and is thermally expandable horizontally along the planar surface.
Abstract:
In an embodiment, a chuck to support a solar cell in hot spot testing is provided. This embodiment of the chuck comprises a base portion and a support portion disposed above the base portion. The support portion is configured to support the solar cell above the base portion and to define a cavity between a bottom surface of the solar cell and the base portion that thermally separates a portion of the bottom surface of the solar cell from the base portion.