Abstract:
The invention provides a semiconductor testkey pattern, the semiconductor testkey pattern includes a high density device region and a plurality of resistor pairs surrounding the high density device region, wherein each resistor pair includes two mutually symmetrical resistor patterns.
Abstract:
Embodiments relate to MEMS devices and methods for manufacturing MEMS devices. In one embodiment, the manufacturing includes forming a monocrystalline sacrificial layer on a non-silicon-on-insulator (non-SOI) substrate, patterning the monocrystalline sacrificial layer such that the monocrystalline sacrificial layer remains in a first portion and is removed in a second portion lateral to the first portion; depositing a first silicon layer, the first silicon layer deposited on the remaining monocrystalline sacrificial layer and further lateral to the first portion; removing at least a portion of the monocrystalline sacrificial layer via at least one release aperture in the first silicon layer to form a cavity and sealing the cavity.
Abstract:
This invention is to provide a nanodevice, which is combined with an electronic device such as a diode, tunnel device and MOS transistor, integrated circuit and manufacturing method of the nanodevice. A nanodevice includes: a first insulating layer 2; one electrode 5A and the other electrode 5B provided to have a nanogap on the first insulating layer 2; a metal nanoparticle or a functional molecule provided between the one electrode 5A and the other electrode 5B; a second insulating layer 8 provided on the first insulating layer 2, and on the one electrode 5A and the other electrode 5B to embed the metal nanoparticle or the functional molecule. The second insulating layer works as a passivating layer.
Abstract:
Embodiments relate to MEMS devices, particularly MEMS devices integrated with related electrical devices on a single wafer. Embodiments utilize a modular process flow concept as part of a MEMS-first approach, enabling use of a novel cavity sealing process. The impact and potential detrimental effects on the electrical devices by the MEMS processing are thereby reduced or eliminated. At the same time, a highly flexible solution is provided that enables implementation of a variety of measurement principles, including capacitive and piezoresistive. A variety of sensor applications can therefore be addressed with improved performance and quality while remaining cost-effective.
Abstract:
A semiconductor integrated circuit includes a substrate, a multi-gate transistor device formed on the substrate, and an n-well resistor formed in the substrate. The substrate includes a plurality of first isolation structures and at least a second isolation structure formed therein. A depth of the first isolation structures is smaller than a depth of the second isolation structure. The multi-gate transistor device includes a plurality of fin structures, and the fin structures are parallel with each other and spaced apart from each other by the first isolation structures. The n-well resistor includes at least one first isolation structure. The n-well resistor and the multi-gate transistor device are electrically isolated from each other by the second isolation structure.
Abstract:
A method that includes forming a first layer having a first dopant concentration, the first layer having an integrated circuit region and a micro-electromechanical region and doping the micro-electromechanical region of the first layer to have a second dopant concentration is presented. The method includes forming a second layer having a third dopant concentration overlying the first layer, doping the second layer that overlies the micro-electromechanical region to have a fourth dopant concentration, forming a micro-electromechanical structure in the micro-electromechanical region using the first and second layers, and forming active components in the integrated circuit region using the second layer.
Abstract:
A photoelectronic device having a variable resistor structure includes a photoelectronic element array. The photoelectronic element array electrically connects with the variable resistor structure via a wire structure, wherein at least one resistor of the variable resistor structure is open.
Abstract:
This invention describes a method of building complementary logic circuits using junction field effect transistors in silicon. This invention is ideally suited for deep submicron dimensions, preferably below 65 nm. The basis of this invention is a complementary Junction Field Effect Transistor which is operated in the enhancement mode. The speed-power performance of the JFETs becomes comparable with the CMOS devices at sub-70 nanometer dimensions. However, the maximum power supply voltage for the JFETs is still limited to below the built-in potential (a diode drop). To satisfy certain applications which require interface to an external circuit driven to higher voltage levels, this invention includes the structures and methods to build CMOS devices on the same substrate as the JFET devices.
Abstract:
This invention describes a method of building complementary logic circuits using junction field effect transistors in silicon. This invention is ideally suited for deep submicron dimensions, preferably below 65 nm. The basis of this invention is a complementary Junction Field Effect Transistor which is operated in the enhancement mode. The speed-power performance of the JFETs becomes comparable with the CMOS devices at sub-70 nanometer dimensions. However, the maximum power supply voltage for the JFETs is still limited to below the built-in potential (a diode drop). To satisfy certain applications which require interface to an external circuit driven to higher voltage levels, this invention includes the structures and methods to build CMOS devices on the same substrate as the JFET devices.
Abstract:
A semiconductor device includes: a semiconductor substrate; a IGBT region including a first region on a first surface of the substrate and providing a channel-forming region and a second region on a second surface of the substrate and providing a collector; a diode region including a third region on the first surface and providing an anode or a cathode and a fourth region on the second surface and providing the anode or the cathode; a periphery region including a fifth region on the first surface and a sixth region on the second surface. The first, third and fifth regions are commonly and electrically coupled, and the second, fourth and sixth regions are commonly and electrically coupled with one another.