Abstract:
A posture adjustment device for an optical sensor includes: a controller, a posture detector, and a posture adjustment structure. An optical sensor to be detected is fixed on the posture adjustment structure. The posture detector receives an emitted beam of the optical sensor to be detected, detects a posture of the optical sensor to be detected according to the emitted beam, and sends posture information to the controller. The controller controls, according to the posture information, the posture adjustment structure to adjust the posture of the optical sensor to be detected.
Abstract:
A method of controlling a piezoelectric driving apparatus including a vibration section that has a piezoelectric element and a transmission section that transmits vibration of the vibration section to a driven body, and, by energization of the piezoelectric element, vibrates the vibration section in a combination of longitudinal vibration and bending vibration to cause the transmission section to perform an elliptical motion and to move the driven body by the elliptical motion, the method of controlling the piezoelectric driving apparatus including switching, according to an external force received by the driven body, a drive algorithm of the piezoelectric driving apparatus between a first drive mode in which a separation amplitude, which is an amplitude of the longitudinal vibration, is changed while a feed amplitude, which is an amplitude of the bending vibration, is constant and a second drive mode in which both the feed amplitude and the separation amplitude are changed.
Abstract:
Provided is a method for controlling an ultrasonic motor provided at a rotary shaft of a surveying instrument to meet requirements for a rotation speed and a plurality of operation modes, and a surveying instrument for the same. In the present invention, the ultrasonic motor is controlled by a first signal having a square wave in a range of rotation speed of the rotary shaft from zero to a first speed, controlled by a second signal in which rises or falls of the square wave are sloped in a range from the first speed to a second speed, controlled by a third signal in which rises and falls of the square wave are sloped in a range from the second speed to a third speed, and controlled by a fourth signal in which the drive signal is continuously applied in a range higher than the third speed.
Abstract:
Provided is a method for controlling an ultrasonic motor to reduce noise sounding during low-speed rotation in a surveying instrument adopting the ultrasonic motor for a rotary shaft, and a surveying instrument for the same. In a method for controlling an ultrasonic motor according to an aspect of the present invention, in a low-speed rotation range of an ultrasonic motor, a ratio of an acceleration period as a time of application of the drive signal in a control cycle is controlled, and a time to start the acceleration period is randomly shifted for each control cycle. In a method for controlling an ultrasonic motor according to another aspect, a time to start the acceleration period is regularly shifted for each control cycle. In a method for controlling an ultrasonic motor according to still another aspect, second-half acceleration control and first-half acceleration control are alternately repeated.
Abstract:
Provided is a control apparatus of a vibration-type actuator for generating an elliptical motion of contact portions by a common alternating current including a frequency determining unit for setting a frequency of the alternating current. The frequency determining unit sets the frequency of the alternating current for changing an ellipticity of the elliptical motion, within a frequency range such that ellipticity changing frequency ranges set for the vibrators are overlapped, and the ellipticity changing frequency ranges are set for the vibrators as frequency ranges between an upper limit and a lower limit, such that the lower limit is a maximum resonant frequency at a time of changing the ellipticity, and the upper limit is larger than the lower limit and is a maximum frequency for the relative movement of the driving member.
Abstract:
A control apparatus for a vibration type actuator, which uses a vibration wave excited by a vibrating member to actuate a movable member in contact with or indirectly connected to the vibrating member, includes a command unit which gives a command indicating at least one parameter, an AC voltage generator which generates the AC voltage for applying the excitation force to the vibrating member, a variable adding unit which adds a predetermined variable to each of one or more parameters, a frequency response characteristic measuring unit which receives as an input a variable output and outputs a physical quantity and obtains a frequency response characteristic at one or more predetermined frequencies, a resonance frequency estimation unit which estimates a resonance frequency of the vibrating member, and a frequency range limiter which determines a frequency range for the AC voltage output by the AC voltage generator.
Abstract:
A measuring system for measuring a physical quantity related to one of an electromagnetic wave and a magnetic field includes a vibration-type actuator, a waveform generating unit configured to generate a driving waveform signal of the vibration-type actuator, an optical transmitter unit configured to receive the driving waveform signal and convert the driving waveform signal into an optical signal, an optical receiver unit configured to receive the optical signal and convert the optical signal into an alternating-current voltage signal, and a drive circuit configured to receive the alternating-current voltage signal and apply the alternating-current voltage signal to the vibration-type actuator. The waveform generating unit and the optical transmitter unit are disposed outside a magnetic shield room. The optical receiver unit, the drive circuit, and the vibration-type actuator are disposed inside the magnetic shield room, and the optical signal is transmitted between the optical transmitter unit and the optical receiver unit.
Abstract:
Noise produced during phase-difference changes is minimized without decreasing the responsiveness of a vibration-wave motor. A lens-side MCU for a lens barrel (controls a drive apparatus that applies a drive voltage to the vibration-wave motor by outputting an A-phase drive signal and a B-phase drive signal thereto. The lens-side MCU uses, for example, a drive-voltage setting unit and a duty-cycle change unit to change the drive voltage. Also, the lens-side MCU is provided with a phase-difference change unit that changes the phase difference between the A-phase drive signal and the B-phase drive signal. When driving the vibration-wave motor, the lens-side MCU changes the drive voltage to Vreg, and when the phase-difference change unit is changing the aforementioned phase difference, the drive voltage is changed to V1, V1 being greater than zero and less than Vreg.
Abstract:
A driving circuit to drive a vibration member comprising an electro-mechanical energy conversion element includes a transformer connected in parallel to the electro-mechanical energy conversion element. The transformer includes a primary coil configured such that an alternating voltage is applied to the primary coil, and a secondary coil connected to the electro-mechanical energy conversion element in parallel, and an inductor connected to the primary coil in series, Parameters of the driving circuit are set such that, when a frequency of a peak voltage applied to the electro-mechanical energy conversion element is denoted by fe and a driving frequency of the vibration member is denoted by fd, a condition fe
Abstract:
Provided are a drive control apparatus and a drive control method for a vibration wave driving apparatus enabling a wider dynamic range and increased quietness. The drive control apparatus for a vibration wave driving apparatus of the present invention is a drive control apparatus for a vibration wave driving apparatus in which, by providing a drive signal to a vibrator provided with an electro-mechanical energy conversion device, a driven part in contact with the vibrator is relatively moved, wherein, when the driven part is activated by changing a frequency of the drive signal, a time throughout which the drive signal is made to be in an off state is provided every time the frequency is changed.