Abstract:
An apparatus includes a first predistorter configured to calculate a first predistortion parameter and configured to distort an input signal using the first predistortion parameter to output a first distortion signal, a second predistorter configured to calculate a second predistortion parameter and configured to distort the first distortion signal using the second predistortion parameter to output a second distortion signal, a power supply configured to receive the first distortion signal to generate a first envelope signal, and configured to limit a bandwidth of the first envelope signal to obtain a second envelope signal to supply a source voltage, and a power amplifier configured to receive the source voltage and to output an output signal obtained by amplifying the second distortion signal.
Abstract:
Systems and methods are provided for generating an amplitude modulation signal to a switchmode power amplifier. A DC to DC switch is configured to receive a DC input voltage and to provide a DC output voltage. A low dropout regulator is configured to provide the amplitude modulation signal according to a modulation control signal received by the low dropout regulator. A control circuit is configured to establish a nominal operating power level for the power amplifier via the amplitude modulation signal and to maintain a minimum voltage difference between the DC output voltage and the low dropout regulator output. A modulator control circuit is configured to provide the modulation control signal to the low dropout regulator. The modulator control circuit provides the transition from a high amplitude to a low amplitude and a transition from the low amplitude to the high amplitude at configurable first and second slopes, respectively.
Abstract:
An amplifying system with increased linearity is disclosed. The amplifying system includes a first gain stage with a first gain characteristic, a second gain stage with a second gain characteristic, and bias circuitry configured to substantially maintain alignment of distortion inflection points between the first gain characteristic and the second gain characteristic during operation. The bias circuitry is configured to further maintain alignment of the distortion inflection points between the first gain characteristic and the second gain characteristic over design corners by providing substantially constant headroom between quiescent bias voltage and turnoff of the first gain stage and the second gain stage. In some embodiments the first gain characteristic is expansive and the second gain characteristic is compressive. In other embodiments the first gain characteristic is compressive and the second gain characteristic is expansive. In some embodiments the first gain stage is configured to provide RF degeneration control of gain.
Abstract:
An amplification device includes at least two amplifiers. The amplification device further includes: a switching unit that switches an amplification mode to one of a first amplification mode and a second amplification mode based on power of a signal before or after amplification by the amplifiers; a separating unit that separates an input signal to two signals having a constant amplitude and different phases from each other when switched to the first amplification mode by the switching unit; a modulation unit that modulates an input signal into a signal having a constant amplitude when switched to the second amplification mode by the switching unit; an amplification unit that amplifies the two signals obtained by the separating unit or two signals obtained by the modulation unit by using the amplifiers; and a combining unit that combines the two signals amplified by the amplifiers.
Abstract:
The invention relates to a method of calibrating an envelope path and an input path of an amplification stage including an envelope tracking power supply, the method comprising: generating input signals having a known relationship for each of the input and envelope paths; and varying an amplitude and a delay of the signal in one of the envelope and input paths in order to reduce the variation in the power detected in a signal at the output of the amplification stage.
Abstract:
Systems and methods are provided for generating an amplitude modulation signal to a switchmode power amplifier. A DC to DC switch is configured to receive a DC input voltage and to provide a DC output voltage. A low dropout regulator is configured to provide the amplitude modulation signal according to a modulation control signal received by the low dropout regulator. A control circuit is configured to establish a nominal operating power level for the power amplifier via the amplitude modulation signal and to maintain a minimum voltage difference between the DC output voltage and the low dropout regulator output. A modulator control circuit is configured to provide the modulation control signal to the low dropout regulator. The modulator control circuit provides the transition from a high amplitude to a low amplitude and a transition from the low amplitude to the high amplitude at configurable first and second slopes, respectively.
Abstract:
An amplifying system with increased linearity is disclosed. The amplifying system includes a first gain stage with a first gain characteristic, a second gain stage with a second gain characteristic, and bias circuitry configured to substantially maintain alignment of distortion inflection points between the first gain characteristic and the second gain characteristic during operation. The bias circuitry is configured to further maintain alignment of the distortion inflection points between the first gain characteristic and the second gain characteristic over design corners by providing substantially constant headroom between quiescent bias voltage and turnoff of the first gain stage and the second gain stage. In some embodiments the first gain characteristic is expansive and the second gain characteristic is compressive. In other embodiments the first gain characteristic is compressive and the second gain characteristic is expansive. In some embodiments the first gain stage is configured to provide RF degeneration control of gain.
Abstract:
Provided is a terrestrial broadcast wave reception-use antenna device having performance that is equivalent to or better than that of a conventional device in frequency bands at or below an FM band even if an antenna element length is shortened to approximately 55 [mm]. An amplifier (12-A) is configured so as to include a compound semiconductor HEMT for amplifying a received wave having a frequency at or below a resonant point of an antenna element (10) among received waves of the antenna element (10), the compound semiconductor HEMT having an equivalent noise resistance of 2[Ω] or smaller for the received frequency so that a noise figure (NF) is approximately constant over a wide frequency band at or below the FM band.
Abstract:
Aspects of a system for improving efficiency over power control for linear and class AB power amplifiers may include a current source circuit that enables determination of a bias current level for a PA circuit within an IC die based on an amplitude of an input modulation signal. The PA circuit may enable generation of an output signal based on a differential input signal and the input modulation signal to the current source circuit. A generated bias voltage may be applied to a transformer external to the IC die, but internal to an IC package containing the IC die and/or a circuit board containing the IC package. One or more amplifier bias voltage levels may be applied to the PA circuit wherein the amplifier bias voltage levels may be derived from the generated bias voltage level and/or the determined bias current level.
Abstract:
A system for controlling amplifier power is provided. The system includes a voltage envelope detector receiving a voltage signal and generating an attenuated voltage envelope signal. A current envelope detector receives a current signal and generates an attenuated current envelope signal. A controller receives power level data and generates attenuation control data for the voltage envelope signal and the current envelope signal. A detector receives the voltage envelope signal and the current envelope signal and generates a control signal based on the greater of the voltage envelope signal and the current envelope signal. A power amplifier level controller receives the control signal and generates a power amplifier level control signal.