Abstract:
A particular apparatus includes a magnetic tunnel junction (MTJ) device and a transistor. The MTJ device and the transistor are included in a comparator that has a hysteresis property associated with multiple transition points that correspond to magnetic switching points of the MTJ device.
Abstract:
A comparator circuit's signal range can be enhanced using an input signal attenuation circuit. In an example, a comparator circuit receives an input signal and a reference signal. The input signal can be conditioned by one or both of the attenuation circuit and a conditioning circuit, and a resulting conditioned signal can be presented to a compare element. Under first operating conditions where the input signal is approximately equal to the reference signal, the attenuation circuit can be substantially bypassed and a first resulting conditioned signal can be presented to the compare element. Under second operating conditions where the input signal is substantially greater than the reference signal, the attenuation circuit receives a portion of the input signal and a different second resulting conditioned signal can be presented to the compare element.
Abstract:
A signal amplitude detection circuit includes a detector and a trimming algorithm module, and the detector having a preset baseline threshold reference value and an output terminal connected with the trimming algorithm module which is arranged for recording and decoding an output result of the detector to output an amplitude code value, and generating a control signal for controlling the baseline threshold reference value rise to a power supply level from a ground level or drop to the ground level from the power supply level, and the output result of the detector being “1” if a crossover occurs between the baseline threshold reference value and the detected signal; otherwise being “0”. The signal amplitude detection circuit detects the signal amplitude in a digital way, which has simpler structure, lower power consumption, reduced size of chips, and stable and accurate detection result without PVT drift.
Abstract:
A semiconductor memory device which includes, in a first embodiment, a first PMOS transistor having a source electrode coupled to a signal transport line, a second PMOS transistor having a source electrode coupled to an inverted signal transport line, a drain electrode coupled to a gate electrode of the first PMOS transistor, and a gate electrode coupled to a drain electrode of the first PMOS transistor, a first current limiter connected between the drain electrode of the first PMOS transistor and a reference potential, a second current limiter connected between the drain electrode of the second PMOS transistor and the reference potential, a first constant current source connected between a supply voltage and the source electrode of the first PMOS transistor, and, a second constant current source connected between the supply voltage and the source electrode of the second PMOS transistor.
Abstract:
Disclosed herein is a data reproduction circuit including: a comparator configured to compare input data resulting from capacitive coupling with a comparison voltage as a threshold voltage and output a comparison result; and a comparison voltage variable section configured to change the comparison voltage along a mark rate of the input data and supply the changed comparison voltage to the comparator.
Abstract:
A signal amplitude detection circuit includes a detector and a trimming algorithm module, and the detector having a preset baseline threshold reference value and an output terminal connected with the trimming algorithm module which is arranged for recording and decoding an output result of the detector to output an amplitude code value, and generating a control signal for controlling the baseline threshold reference value rise to a power supply level from a ground level or drop to the ground level from the power supply level, and the output result of the detector being “1” if a crossover occurs between the baseline threshold reference value and the detected signal; otherwise being “0”. The signal amplitude detection circuit detects the signal amplitude in a digital way, which has simpler structure, lower power consumption, reduced size of chips, and stable and accurate detection result without PVT drift.
Abstract:
A Folding Comparator circuit which receives an analog input current and both compares it to a DC reference current while at the same time folding the input current around the reference current to be passed on as an output current which can then be passed on to another folding comparator stage. A series of such stages connected together with some XOR logic gates can perform an analog to digital conversion process as a pipeline of auto-folding stages which will instantly convert analog signal to digital signal.
Abstract:
A comparator is provided with a pair of transistors which are continuously in ON state, in which a switch unit constructed of a diode pair, for switching a current path in response to a high/low relationship between a voltage level of an input signal and a voltage level of a reference voltage, and a unit for converting a current into a voltage level are provided between emitter terminals of the transistor pair.