Abstract:
A machining center having at least one door to control access to an enclosure thereof, where access through the door is provided by an unlocked latch, and the latch is unlocked based on wirelessly communicated signals relaying information about at least one operating condition of a fluid driven cutting tool spindle in use within the machining center.
Abstract:
The wear status of a micro-endmill tool may be inferred by monitoring the chip production rate of the tool in operation. Chips may be extracted from a work area, captured on an adhesive surface, imaged, and counted to determine the chip production rate. When the rate of chip production falls, the feed rate of the micro-endmill may be increased to a level suitable for the current state of tool wear. In this manner, costly and inconvenient work stoppages to evaluate the wear status of a tool are eliminated.
Abstract:
A machining center having at least one door to control access to an enclosure thereof, where access through the door is provided by an unlocked latch, and the latch is unlocked based on wirelessly communicated signals relaying information about at least one operating condition of a fluid driven cutting tool spindle in use within the machining center.
Abstract:
A spindle control system for a milling machine is provided. The milling machine includes a column, an overarm, a spindle for mounting a cutter, a first motor mounted on the column for driving movement of the overarm, and a second motor mounted on the overarm for driving rotation of the spindle. The spindle control system includes a distance sensor and a temperature sensor, each to be mounted on the overarm and to be disposed proximate to the end portion of the spindle. The spindle control system further includes a central control unit for determining a compensation parameter based on the displacement sensed by the distance sensor and the temperature sensed by the temperature sensor, and for controlling movement of the overarm by the first motor through a compensation distance based on the compensation parameter to compensate for at least one of the cutter deformation and the spindle deformation.
Abstract:
A tool attachable to a spindle of a machine tool in the same way as an ordinary tool, capable of being driven without connecting with an external power supply etc., giving a higher rotational speed than that of the spindle of the machine tool without supplying electric power from the outside, and able to be changed automatically, provided with a machining tool for machining a workpiece, a motor for driving the machining tool, a generator for generating electric power to drive the motor by the rotation of the spindle, and a breaker for breaking a supply line of electric current from the generator to the motor when electric current over a predetermined value flows in the supply line.
Abstract:
A plunge-type router is disclosed which has a base and a head assembly that is vertically adjustable by an adjusting mechanism. The plunge router includes an electronic control system with a digital display and control functionality that enables the router to accurately determine a baseline or zero position for a router bit installed in the router and permits the user to input a depth of cut value or other predetermined command. The control system then automatically causes the motorized adjusting mechanism to go to the appropriate position. The electronic control system enables the storage of multiple depth settings as well as multiple step or macro operations. In this regard, macros may be run to provide incremental cutting necessary for performing multiple passes to achieve a relatively deep depth of cut.
Abstract:
An apparatus for abrading a substrate including a moveable abrading tool having a bur for abrading the substrate, a stage for supporting the substrate, and a height sensing device in communication with the abrading tool to determine a vertical position of the bur with respect to the substrate. Further disclosed is a method for abrading a substrate using the foregoing apparatus including moving the abrading tool across the substrate so as to abrade the substrate, determining the vertical position of the bur with the height sensing device, and communicating the vertical position of the bur to the abrading tool.
Abstract:
An automated quill drive assembly is adapted to be retrofit on a milling machine having a frame presenting a quill head and a quill supported on the head for rotation and for relative shiftable movement along a linear axis between retracted and extended positions. The quill head includes a centrally disposed lower lug, a quill feed engagement control lever boss located above and spaced to one side of the lug, and a transmission cover opening located above and spaced to a side of the lug opposite the quill feed engagement control lever boss. The automated quill drive assembly includes a housing adapted to be mounted to the lug, the quill feed engagement control lever boss, and the transmission cover opening, a motor supported on the housing, and a transmission supported on the housing for transmitting automated movement from the motor to the quill to move the quill between the retracted and extended positions. A sensor is provided for continuously sensing the position of the quill as the quill is moved between the retracted and extended positions. The sensor provides an output signal indicative of the position of the quill for both manual and automated movement.
Abstract:
The wear status of a micro-endmill tool may be inferred by monitoring the chip production rate of the tool in operation. Chips may be extracted from a work area, captured on an adhesive surface, imaged, and counted to determine the chip production rate. When the rate of chip production falls, the feed rate of the micro-endmill may be modified to a level suitable for the current state of tool wear. In this manner, costly and inconvenient work stoppages to evaluate the wear status of a tool are eliminated.