Abstract:
The present invention relates to concentrated inorganic/organic sols that are readily diluted with water to form coating agents for textile materials. Further, the use of the aqueous formulations, especially for the washproof coating of a textile material.
Abstract:
The invention concerns crosslinkable silicone compositions, useful for forming water-repellent and release coating for flexible heat-sensitive support. Said compositions comprise crosslinking polyorganosiloxanes (POS) bearing ≡Si—H units and unsaturated POS, for example ≡Si-Vi vinyl-containing POS, capable of reacting with the crosslinking agent by polyaddition, in the presence of platinum to form a release crosslinked coat on the flexible support. The invention aims at instantaneously enabling low platinum content crosslinking of such silicone compositions, coated at high speed. Therefor, the invention provides for the use of particular crosslinking agents consisting of hydrogenated POS comprising at least three hydrogen atoms bound to the silicon located at chain end and in the chain. The invention also concerns solvent-free or emulsion-type silicone compositions comprising the ≡Si-Vi POS (I.1), the crosslinking agent ≡Sl-H POS (l.2) and the platinum catalyst among others. The invention is useful for coating flexible supports, for example made of Lissé BEKK>1000 paper.
Abstract:
A method is provided for the application of a finishing layer to a textile support material. A water repellent or oil repellent layer, a so-called finishing layer, is applied to a textile support material selected from the group of fibers, tissues, and fabrics. The water repellent or oil repellent finishing layer comprises at least two water repellent or oil repellent components wherein a first component comprises one or more dispersants and a second component comprises one or more dispersed phases or colloids, and wherein the dispersant and the dispersed phase are present in the gel state.
Abstract:
The present invention relates to a non-blocking roll of roofing membrane employing a combination of silicone rubber sealant, non-woven fiberglass scrim and pressure sensitive adhesive. The method utilizes a process by which silicone rubber sealant is applied to the top surface of the non-woven fiberglass scrim and made to penetrate 1/10 to 9/10 of the way into the thickness of the scrim, thus no silicone rubber sealant reaches the bottom or underside surface of the scrim. To the remaining {fraction (9/10)} to {fraction (1/10)} of the scrim's thickness and to the bottom surface of the scrim is applied pressure sensitive adhesive. This construction results into a self-adherent roofing membrane that can be packaged and transferred in roll form without the need to include an additional release liner sheet or non-blocking material such as talc, mica, or clay powder.
Abstract:
A composition for the promotion of adhesion between a rubber formulation and a textile substrate is provided. The inventive composition comprises either a mixture of specific amine functional silanes and organo-functional silanes having reactive groups or groups with an affinity for rubber. The inventive method entails the use of the inventive composition or a silane compound having both an amine moiety and a reactive group having an affinity for rubber formulations, particularly an unsaturated carbon-carbon bond. The composition may be utilized to adhere any standard reinforcement-type textile, such as polyester or polyamide, to a standard rubber composition, such as SBR, NBR, or EPDM. A method for adhering textiles to rubber formulations is also provided involving a pre-dip, -spray, -coat, and the like, of the inventive composition on a reinforcement-type textile surface followed by the contacting of the rubber formulation. Optionally, and preferably, the process involves the extra utilization of resorcinol-formaldehyde latex as an effective bonding agent to improve the adhesion between the two layers. The resulting textile-reinforced rubber product may be utilized as an automobile fan or timing belt, an automobile tire component, and any other rubber article which requires long-lasting, durable textile reinforcement.
Abstract:
The moisture transfer system includes a waterproof/breathable moisture transfer liner having an inner fabric layer selected from technically advanced fabrics which are carefully selected. A series of layers are provided outside the inner liner including foam material layers, breathable membranes, encapsulation technology, waterproof films and an outer fabric layer. The moisture transfer system in incorporated into in-line skate as either a removable liner for a shell boot or a liner for a softboot.
Abstract:
The present invention provides a liquid silicone ester having a melting point of up to about 30.degree. C., and comprising (A) units of the general formula R.sub.a R.sup.E.sub.b SiO.sub.[4-(a+b)]/2 or (B) R.sub.x R.sup.E.sub.y SiO.sub.1/2 units and SiO.sub.4/2 units; R.sup.E being an ester-containing organic group. The silicone ester is liquid at ambient skin temperature and has improved workability, improved payout, improved emollient properties, greater solubility in organic compounds, greater substantivity to surfaces and improved water resistance.
Abstract:
A fibrous composite material of essentially two-dimensional form in the form of individual fibres, sheets or layers comprising combustible fibres and lamellae of a layer mineral of size below 50 microns, a method for the manufacture of the fibrous composite materials by applying lamellae of a layer mineral to the fibres preferably from suspension followed by removal of the liquid phase of the suspension, and use of the fibrous composite materials for the fire-protection of substrates.
Abstract:
A fibrous composite material in the form of individual fibres, sheets, layers or lightweight blocks comprising non-combustible fibres and lamellae of a layer mineral, a method for the manufacture of the fibrous composite materials by applying lamellae of a layer mineral to the fibres preferably from suspension followed by removal of the liquid phase of the supension, and use of the fibrous composite materials for the fire-protection of substrates.
Abstract:
A fibrous composite material in the form of a three-dimensional block comprising a mass of combustible fibres and lamellae of a layer mineral, a method for the manufacture of the fibrous composite materials by applying lamellae of a layer mineral, preferably from a suspension, to combustible fibres and forming the fibres and layer mineral into a three-dimensional block, and use of the fibrous composite materials as insulating materials and for the fire protection of substrates.