Manufacturing method and mold for artificial shuttlecock

    公开(公告)号:US11890794B2

    公开(公告)日:2024-02-06

    申请号:US17969881

    申请日:2022-10-20

    摘要: A mold for manufacturing an artificial shuttlecock from a semi-finished shuttlecock includes a male mold and a female mold. The male mold includes a cone frustum and a plurality of first annular grooves. The semi-finished shuttlecock is placed on an outside of the cone frustum. The first annular grooves are disposed apart on the outside of the cone frustum. The female mold includes a tapered slot, a plurality of second annular grooves and an injection channel. The second annular grooves are disposed apart on an inner surface of the tapered slot. When the semi-finished shuttlecock and the male mold are placed into the female mold, each of the first annular grooves corresponds to each of the second annular grooves to form a plurality of molded grooves. The injection channel communicates with the second annular grooves, and the molded grooves communicate with the injection channel through the second annular grooves.

    Base for roller skates
    7.
    发明授权

    公开(公告)号:US11701574B2

    公开(公告)日:2023-07-18

    申请号:US17370374

    申请日:2021-07-08

    发明人: Juei-Chieh Yu

    摘要: A base for roller skates includes a skeleton and a reinforcing shell. The skeleton is made of a first material through one-time processing and is formed with a plurality of hollow areas. The reinforcing shell includes a plurality of inlaid structures respectively embedded in the hollow areas is directly disposed on the skeleton by injection molding with a second material. The second material is different from the first material. Two roller frame mounting hole sets on the base for roller skates are directly formed by the skeleton, and a brake block mounting hole and a treading platform on the base for roller skates are formed by the reinforcing shell. The base for roller skates is not made of single metal material like prior arts, making it capable of reducing fracture due to the hard and brittle characteristics of the material used in prior art.

    Moldless vacuum infusion process
    9.
    发明授权

    公开(公告)号:US11491750B2

    公开(公告)日:2022-11-08

    申请号:US16241511

    申请日:2019-01-07

    摘要: A manufacturing method contemplates performing vacuum-assisted resin infusion to enclose an elongated core within a cured composite laminate without employing a mold. Not relying upon an external mold enables the process to be efficiently performed for core shapes that are manufactured in low volumes. Typical resin infusion processes utilize flow media that induces bag bridging during vacuum draw in order to provide gaps facilitating resin flow. However, popular flow media also tends to impart directional aggregate forces during vacuum draw, which forces can deform the core since no mold is being used. To avoid unequal and non-dispersed directional forces from deforming the elongated core, a flow media is employed that is configured to disperse and/or reduce such forces. Some such flow media may be knitted so as to allow overlapping strands to slide over one another. Other flow media may ensure that strands are interleaved so that no one strand or group of strands is disposed outwardly of other strands along a substantial length of the strands, thus dispersing bag bridging forces in several directions and avoiding directional aggregate forces. However, such flow media may have inhibited resin flow relative to popular high-flow flow media, and thus new strategies have been developed to ensure appropriate wetting of fibrous reinforcement. An adjustable brace can also be employed to restrain the elongated core from deflecting during application of vacuum and/or resin infusion.

    Ball bat with one-piece multi-wall barrel portion

    公开(公告)号:US11325327B2

    公开(公告)日:2022-05-10

    申请号:US16989414

    申请日:2020-08-10

    摘要: A method of forming a barrel portion including obtaining a mandrel shaped to define at least an inner surface of a barrel portion of the bat, wrapping a first plurality of layers of fiber composite material about the mandrel, placing a removable material over a first portion of the first plurality of layers, and wrapping a second plurality of layers of fiber composite material over the removable material and the portion of the first plurality of layers not covered by the removable material for form an assembly. The method further includes separating the mandrel from the assembly, inserting an expandable member within the assembly, inserting the assembly into a barrel-forming mold, and molding the assembly in a single molding cycle, curing the first and second layers with the removable material to form the barrel portion of the bat, and removing the removable material and the member from the barrel portion.