-
公开(公告)号:US11242262B2
公开(公告)日:2022-02-08
申请号:US15390853
申请日:2016-12-27
摘要: A method is provided for producing an article which is transparent to IR wavelength in the region of 4 μm to 9 μm. The method includes the steps of (a) Producing ultra-fine powders of ZnS, (b) followed by pretreatment of the ultra-fine powders under reduced gas conditions including H2, H2S, N2, Ar and mixtures there of (c) followed by vacuum (3×10−6 torr) treatment to remove oxygen and sulfates adsorbed to the surface disposing a plurality of nano-particles on a substrate, wherein said nanoparticles comprise ZnS with ultra-high purity of cubic phase; (b) subjecting the nano-particles to spark plasma sintering thereby producing a sintered ZnS product with IR transmission reaching 75% in the wavelength range of 4 μm to 9 μm.
-
公开(公告)号:US10944065B2
公开(公告)日:2021-03-09
申请号:US15746860
申请日:2016-07-28
申请人: NEXDOT
发明人: Emmanuel Lhuillier
IPC分类号: H01L29/06 , H01L51/42 , C01B19/00 , C01G11/02 , C01G13/00 , C01G28/00 , C01G30/00 , G01J5/08 , G01J5/20 , H01L27/30 , H01L37/02 , H01L51/00 , H01L51/44
摘要: Disclosed is a plurality of metal chalcogenide nanocrystals coated with multiple organic and inorganic ligands; wherein the metal is selected from Hg, Pb, Sn, Cd, Bi, Sb or a mixture thereof; and the chalcogen is selected from S, Se, Te or a mixture thereof; wherein the multiple inorganic ligands includes at least one inorganic ligands are selected from S2−, HS−, Se2−, Te2−, OH−, BF4−, PF6−, Cl−, Br−, I−, As2Se3, Sb2S3, Sb2Te3, Sb2Se3, As2S3 or a mixture thereof; and wherein the absorption of the C—H bonds of the organic ligands relative to the absorption of metal chalcogenide nanocrystals is lower than 50%, preferably lower than 20%.
-
公开(公告)号:US10233390B2
公开(公告)日:2019-03-19
申请号:US15435696
申请日:2017-02-17
发明人: Nigel Pickett , Nathalie Gresty
IPC分类号: H01L33/00 , H01L33/06 , H01L33/30 , C09K11/88 , C09K11/02 , C09K11/56 , C09K11/70 , C01B19/00 , C01B25/08 , C01G9/08 , C01G11/02 , H01L33/28 , H01L33/32 , H01L33/08 , B82Y20/00 , B82Y40/00
摘要: Light-emitting materials are made from a porous light-emitting semiconductor having quantum dots (QDs) disposed within the pores. According to some embodiments, the QDs have diameters that are essentially equal in size to the width of the pores. The QDs are formed in the pores by exposing the porous semiconductor to gaseous QD precursor compounds, which react within the pores to yield QDs. According to certain embodiments, the pore size limits the size of the QDs produced by the gas-phase reactions. The QDs absorb light emitted by the light-emitting semiconductor material and reemit light at a longer wavelength than the absorbed light, thereby “down-converting” light from the semiconductor material.
-
4.
公开(公告)号:US20180290896A1
公开(公告)日:2018-10-11
申请号:US15390853
申请日:2016-12-27
摘要: A method is provided for producing an article which is transparent to IR wavelength in the region of 4 μm to 9 μm. The method includes the steps of (a) Producing ultra-fine powders of ZnS, (b) followed by pretreatment of the ultra-fine powders under reduced gas conditions including H2, H2S, N2, Ar and mixtures there of (c) followed by vacuum (3×10−6 torr) treatment to remove oxygen and sulfates adsorbed to the surface disposing a plurality of nano-particles on a substrate, wherein said nanoparticles comprise ZnS with ultra-high purity of cubic phase; (b) subjecting the nano-particles to spark plasma sintering thereby producing a sintered ZnS product with IR transmission reaching 75% in the wavelength range of 4 μm to 9 μm.
-
5.
公开(公告)号:US20180244534A1
公开(公告)日:2018-08-30
申请号:US15558984
申请日:2016-03-15
申请人: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada,
CPC分类号: C01G11/02 , C01B19/007 , C01G3/12 , C01G9/08 , C01G21/21 , C01P2002/72 , C01P2002/74 , C01P2002/84 , C01P2004/03 , C01P2004/04 , C01P2006/40 , C25B1/003 , C25B11/0405 , C25B11/0447 , H01L31/03926 , H01L31/1828 , Y02E10/543 , Y02P20/134
摘要: Disclosed herein are embodiments of chalcogenide materials and chalcogenide-based materials that exhibit improved light-driven properties and performance in comparison to conventional materials. Also disclosed herein are embodiments of cost- and time-efficient methods of making such materials.
-
公开(公告)号:US20180117577A1
公开(公告)日:2018-05-03
申请号:US15827278
申请日:2017-11-30
发明人: Prashant Nagpal , Vivek Singh , Ignacio Castellanos Beltran , Yahya Alivov , Yuchen Ding , Logan Jerome Cerkovnik
IPC分类号: B01J35/00 , C25B11/04 , B01J23/72 , B01J27/04 , B01J27/047 , C25B3/04 , C25B1/04 , C01G11/02 , B01J35/02 , B01J27/057 , B01J27/051
CPC分类号: B01J35/004 , B01J23/72 , B01J27/04 , B01J27/047 , B01J27/051 , B01J27/0573 , B01J35/0013 , B01J35/023 , C01G11/02 , C01P2004/16 , C01P2004/51 , C25B1/04 , C25B3/04 , C25B11/0478 , Y02E60/366 , Y02P20/133
摘要: Photocatalysts for reduction of carbon dioxide and water are provided that can be tuned to produce certain reaction products, including hydrogen, alcohol, aldehyde, and/or hydrocarbon products. These photocatalysts can form artificial photosystems and can be incorporated into devices that reduce carbon dioxide and water for production of various fuels. Doped wide-bandgap semiconductor nanotubes are provided along with synthesis methods. A variety of optical, electronic and magnetic dopants (substitutional and interstitial, energetically shallow and deep) are incorporated into hollow nanotubes, ranging from a few dopants to heavily-doped semiconductors. The resulting wide-bandgap nanotubes, with desired electronic (p- or n-doped), optical (ultraviolet bandgap to infrared absorption in co-doped nanotubes), and magnetic (from paramagnetic to ferromagnetic) properties, can be used in photovoltaics, display technologies, photocatalysis, and spintronic applications.
-
公开(公告)号:US09850130B2
公开(公告)日:2017-12-26
申请号:US14096585
申请日:2013-12-04
CPC分类号: C01B17/20 , B82Y30/00 , B82Y40/00 , C01B19/002 , C01B19/007 , C01G1/12 , C01G11/02 , C01P2002/86 , C01P2004/64 , C01P2004/84 , C01P2006/90
摘要: Provided are nanoparticles passivated with a cationic metal-chalcogenide complex (MCC) and a method of preparing the same. A passivated nanoparticle includes: a core nanoparticle; and a cationic metal-chalcogenide compound (MCC) fixed on a surface of the core nanoparticle.
-
8.
公开(公告)号:US09771263B2
公开(公告)日:2017-09-26
申请号:US14500775
申请日:2014-09-29
发明人: Boaz Pokroy , Anastasia Brif
IPC分类号: H01L29/167 , H01L29/207 , H01L29/22 , H01L29/227 , H01L29/24 , C01B19/00 , C01B17/00 , G01N33/58 , G01N33/68 , C01G21/21 , C01G9/02 , C01G11/02 , C07K4/00 , C07K9/00
CPC分类号: C01B19/007 , C01G9/02 , C01G11/02 , C01G21/21 , C01P2002/74 , C01P2006/40 , C07K4/00 , C07K9/00 , G01N33/588 , G01N33/68 , H01L29/167 , H01L29/207 , H01L29/2203 , H01L29/227
摘要: The present invention provides a semiconductor crystal comprising a semiconductor material having a tuned band gap energy, and methods for preparation thereof. More particularly, the invention provides a semiconductor crystal comprising a semiconductor material and amino acid molecules, peptides, or a combination thereof, incorporated within the crystal lattice, wherein the amino acid molecules, peptides, or combination thereof tune the band gap energy of the semiconductor material.
-
公开(公告)号:US09768333B2
公开(公告)日:2017-09-19
申请号:US14246632
申请日:2014-04-07
申请人: UT-Battelle, LLC
发明人: Tommy J. Phelps , Robert J. Lauf , Ji-Won Moon , Adam Justin Rondinone , Lonnie J. Love , Chad Edward Duty , Andrew Stephen Madden , Yiliang Li , Ilia N. Ivanov , Claudia Jeanette Rawn
IPC分类号: C12P3/00 , H01L31/032 , C01B17/20 , C01B19/00 , C01G9/08 , C01G11/02 , C01G15/00 , C01G19/00 , H01L31/0352
CPC分类号: H01L31/0326 , C01B17/20 , C01B19/007 , C01G9/08 , C01G11/02 , C01G15/006 , C01G19/006 , C01P2002/72 , C01P2002/82 , C01P2002/84 , C01P2004/04 , C01P2006/40 , C12P3/00 , H01L31/035218 , Y10T428/2982
摘要: The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component comprising at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.
-
公开(公告)号:US20160151768A1
公开(公告)日:2016-06-02
申请号:US14891228
申请日:2014-05-08
发明人: Steven L. SUIB , Altug Suleyman POYRAZ , Lei JIN , Chung-hao KUO
IPC分类号: B01J27/14 , B01J23/30 , B01J23/14 , B01J37/08 , C01G9/08 , C01G11/00 , C01G19/02 , C01G37/033 , C01G27/02 , C01G33/00 , C01F17/00 , C01G45/02 , H01B1/02 , C01B33/12 , C01G11/02 , C01G25/02 , B01J27/053
CPC分类号: B01J27/14 , B01J21/066 , B01J21/18 , B01J23/10 , B01J23/14 , B01J23/20 , B01J23/24 , B01J23/30 , B01J23/34 , B01J27/04 , B01J27/053 , B01J27/057 , B01J29/0341 , B01J29/045 , B01J29/40 , B01J35/0013 , B01J35/023 , B01J35/1014 , B01J35/1019 , B01J35/1023 , B01J35/1038 , B01J35/1042 , B01J35/1047 , B01J35/1057 , B01J35/1061 , B01J37/0018 , B01J37/04 , B01J37/08 , B01J37/084 , B01J37/10 , B01J2229/37 , B82Y30/00 , C01B19/002 , C01B19/007 , C01B32/00 , C01B33/12 , C01F17/0043 , C01G1/02 , C01G1/12 , C01G9/08 , C01G11/00 , C01G11/006 , C01G11/02 , C01G19/02 , C01G25/02 , C01G27/02 , C01G33/00 , C01G35/00 , C01G37/02 , C01G37/033 , C01G41/00 , C01G45/02 , C01P2002/72 , C01P2002/74 , C01P2002/85 , C01P2004/03 , C01P2004/62 , C01P2004/64 , C01P2006/12 , C01P2006/14 , C01P2006/16 , C01P2006/17 , C01P2006/37 , C01P2006/40 , H01B1/02
摘要: A process for preparing a mesoporous material, e.g., transition metal oxide, sulfide, selenide or telluride, Lanthanide metal oxide, sulfide, selenide or telluride, a post-transition metal oxide, sulfide, selenide or telluride, and metalloid oxide, sulfide, selenide or telluride. The process comprises providing a micellar solution comprising a metal precursor, an interface modifier, a hydrotropic or lyotropic ion precursor, and a surfactant; and heating the micellar solution at a temperature and for a period of time sufficient to form the mesoporous material. A mesoporous material prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous materials. The method comprises providing a micellar solution comprising a metal precursor, an interface modifier, a hydrotropic or lyotropic ion precursor, and a surfactant; and heating the micellar solution at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous materials. Mesoporous materials and a method of tuning structural properties of mesoporous materials.
摘要翻译: 一种制备介孔材料的方法,例如过渡金属氧化物,硫化物,硒化物或碲化物,镧系元素金属氧化物,硫化物,硒化物或碲化物,过渡后金属氧化物,硫化物,硒化物或碲化物以及类金属氧化物,硫化物,硒化物 或碲化物。 该方法包括提供包含金属前体,界面改性剂,水溶助溶剂或溶致离子前体和表面活性剂的胶束溶液; 并在足以形成介孔材料的温度和一段时间内加热胶束溶液。 通过上述方法制备的介孔材料。 一种在介孔材料中控制纳米尺寸壁结晶度和介孔度的方法。 该方法包括提供包含金属前体,界面改性剂,水溶助溶剂或溶致离子前体和表面活性剂的胶束溶液; 并在足以控制中孔材料中的纳米尺寸壁结晶度和中孔性的温度和一段时间内加热胶束溶液。 介孔材料和调谐介孔材料结构性能的方法。
-
-
-
-
-
-
-
-
-