Photochromic nanomaterial capable of blocking ultraviolet rays, production method and use thereof

    公开(公告)号:US11008220B2

    公开(公告)日:2021-05-18

    申请号:US16083801

    申请日:2017-08-24

    摘要: The present disclosure provides a photochromic nanomaterial capable of blocking ultraviolet rays with a general formula of MaObXc, a production method and use thereof, wherein the M, O and X and a, b and c are as defined herein. The nanomaterial may be prepared by the following method: heating a mixture of an M-containing cation source compound, a polyol, a surfactant and first solvent under agitation, to obtain a hot first solution; mixing an X-containing anion source compound and a second solvent, to obtain a second solution; injecting the second solution into the hot first solution, to perform a reaction and obtain a reaction mixture; and subjecting the reaction mixture to post-treatment. The nanomaterial of the present disclosure can block 80% or more of UV rays, in particular, may change to a transparent dark color and reduce the transmittance under irradiation by strong light, whereas may restore colorless transparent state under irradiation by weak or non-strong light. Additionally, the present disclosure may have following features: a simple processing flow, low cost, high productivity, applicability in the industrial production, etc.

    PREPARATION APPARATUS FOR NANOCOMPOSITE MATERIAL AND SELF-ASSEMBLY PREPARATION METHOD

    公开(公告)号:US20190015338A1

    公开(公告)日:2019-01-17

    申请号:US15775063

    申请日:2016-11-08

    发明人: Jeong Hoon BYEON

    摘要: The present invention relates to a self-assembly preparation method of a nanocomposite material, and more particularly, relates to a self-assembly preparation method of a nanocomposite material comprising steps of: spraying a drug-containing solution onto metal aerosol nanoparticles to form a drug layer on the metal aerosol nanoparticles; and spraying a polymer-containing solution onto the metal aerosol nanoparticles, on which the drug layer is formed, to form a polymer layer on the drug layer, whereby since the method involves no liquid chemical process upon producing the metal aerosol nanoparticles, the processes are simple and can be performed even at a low temperature to suppress deformation of an organic or a drug, and the release rate of the drug, or the like can be easily controlled through metal types of metal aerosol nanoparticles, modification, and the like.