摘要:
Methods of forming spinel ferrite nanoparticles containing a chromium-substituted copper ferrite as well as properties (e.g. particle size, crystallite size, pore size, surface area) of these spinel ferrite nanoparticles are described. Methods of preventing or reducing microbe growth on a surface by applying these spinel ferrite nanoparticles onto the surface in the form of a suspension or an antimicrobial product are also described.
摘要:
Methods of forming spinel ferrite nanoparticles containing a chromium-substituted copper ferrite as well as properties (e.g. particle size, crystallite size, pore size, surface area) of these spinel ferrite nanoparticles are described. Methods of preventing or reducing microbe growth on a surface by applying these spinel ferrite nanoparticles onto the surface in the form of a suspension or an antimicrobial product are also described.
摘要:
A cutting implement including a metal substrate and a coating is provided. The coating has zirconium PVD (ZrCRTiNO), which provides protection against corrosion of the metal substrate. In some instances, the zirconium PVD provides protection from corrosion for at least 200 hours. A layer of titanium nitride (TiN) can be added to the coating to increase the hardness of the metal substrate. In such an embodiment, the layer of titanium nitride (TiN) is applied before the zirconium PVD (ZrCRTiNO). Titanium nitride (TiN) coated steel is 3 to 5 times harder than uncoated steel. Thus, a combination of titanium nitride (TiN) and zirconium PVD (ZrCRTiNO) as a coating on a metal substrate can increase the life of the metal substrate by providing increased hardness and anti-corrosive properties.
摘要:
A method for positive electrode active material for a secondary battery includes preparing a precursor by reacting a nickel raw material, a cobalt raw material and an M1 raw material; forming a first surface-treated layer including an oxide of Formula 2 below, on a surface of a core including a lithium composite metal oxide of Formula 1 below, by mixing the precursor with a lithium raw material and an M3 raw material, firing the resultant mixture; and forming a second surface-treated layer including a lithium compound of Formula 3 below, on the core with the first surface-treated layer formed thereon, LiaNi1−x−yCoxM1yM3zM2wO2 [Formula 1] LimM4O(m+n)/2 [Formula 2] LipM5qAr [Formula 3] wherein, in Formulae 1 to 3, A, M1 to M5, a, x, y, z, w, m, n, p, and q are the same as those defined in the specification.
摘要:
Shaded, zirconia ceramic materials are disclosed that are suitable for use in dental applications. Ceramic bodies are made from a zirconia-containing ceramic material and a coloring composition comprising a terbium (Tb)-containing component and a chromium (Cr)-containing component as a coloring agent. The pre-shaded ceramic body is machinable into a dental restoration either as a bisque body or sintered body. A pre-shaded machinable sintered ceramic body may obviate the need for further processing steps, such as shading or sintering, and may be suitable for use in chair-side machining applications, such as in a dentist's office, significantly reducing the time to create a custom finished product.
摘要:
Process for preparing chromium(III) oxide, which comprises the steps: a) reaction of sodium monochromate with gaseous ammonia, in particular at a temperature of from 200 to 800° C., b) hydrolysis of the reaction product obtained in step a) with the pH of the water for the hydrolysis being reduced before the hydrolysis or that of the alkaline mother liquor being reduced during or after the hydrolysis, to a value of from 4 to 11, preferably from 5 to 10, by means of an acid, c) isolation of the hydrolysis product which has precipitated in step b), preferably at a pH of from 4 to 11, in particular from 5 to 10, and optionally washing and optionally drying and d) calcination of the hydrolysis product obtained in step c) at a temperature of from 700 to 1400° C., in particular from 800 to 1300° C.
摘要:
The present invention relates to method and a system of reducing chromium (VI) from a chromium bearing solution. The reduction of the chromium (VI) is achieved by contacting the chromium bearing solution which comprises chromium (VI) ions in an aqueous solution with iron fibers in an exchange mass under oxidation-reduction potential conditions at a pH of at least 2.5, with entry of iron ions into solution in the aqueous solution and reduction of the chromium (VI) ions to chromium (III) recovered in the exchange mass. A solution substantially free of chromium (VI) ions and total chromium is produced and discharged from the exchange mass.
摘要:
Methods of converting shaped templates into shaped metal-containing components, allowing for the production of freestanding, porous metal-containing replicas whose shapes and microstructures are derived from a shaped template, and partially or fully converting the shaped templates to produce metal-containing coatings on an underlying shaped template are described herein. Such coatings and replicas can be applied in a variety of fields including, but not limited to, catalysis, energy storage and conversion, and various structural or refractory materials and structural or refractory composite materials.
摘要:
The present invention provides a method and apparatus for removing mercury from gases such as those discharged from roasters and other heat producing systems. In embodiments the method comprises reacting the mercury with dissolved molecular chlorine, and may also comprise reacting the mercury with mercuric chloride to yield mercurous chloride. The mercurous chloride may be removed by precipitation. There are also disclosed apparatuses for implementing the method.
摘要:
The invention relates to a system and method for the substantially permanent biogeochemical stabilization of solids impacted with hexavalent chromium/Cr(VI), including chromite ore processing residue (“COPR”). The invention comprises a novel treatment method of adding amendment(s) to COPR or other chromate impacted solids for the purpose of (1) weathering COPR minerals (when present) to convert the minerals that control alkalinity of the COPR to non-alkaline forms and liberate incorporated hexavalent chromium (Cr(VI)) in the process; (2) providing a chemical reductant (ferrous iron) to rapidly and permanently reduce the available Cr(VI) to trivalent form (Cr(III)); and/or (3) supporting longer-term biogeochemical Cr(VI) reduction enhanced by recycling of the chemical reductant, ultimately rendering the material non-hazardous as measured by acceptable methods. Amendments include but are not limited to acids; sources of ferrous iron; fermentable organic carbon source(s); and/or a source of active anaerobic microbes.