Abstract:
A fast pyrolysis heat exchanger system for economically and efficiently converting biomass and other combustible materials into bio-oil. The system employs multiple closed loop tubes situated inside the heat exchanger. As a granular solid heat carrier is deposited at the top of the heat exchanger and caused to move downwardly therethrough, heat is transferred from the tubes to the heat carrier which is then transferred to a reactor where it is placed in contact with the combustible materials.
Abstract:
Olefins are made by passing a cracker stream through a convection section of a cracker furnace; introducing steam and a stream comprising a recycle content pyrolysis oil into the cracker stream to form a combined stream, and the steam, r-pyoil stream, or both are introduced downstream of the inlet to the convection section, such as between the inlet to the coils and the radiant zone, or at the cross-over. Additionally, dilution steam can be added to a stream of r-pyrolysis to form a steam-diluted r-pyoil stream which is then introduced into a cracker furnace at any location, such as downstream of the inlets to the convection box or at a cross-over.
Abstract:
The liquid feed nozzle assemblies for a circulating fluid bed reactor comprise (i) a throttle body premixer to combine liquid feed with atomization steam to form a liquid feed/steam mixture comprising gas bubbles in liquid; (ii) a conduit connected to the premixer and to a discharge nozzle to convey a flow of the liquid/steam mixture created by the premixer to the nozzle body; (iii) a discharge nozzle connected to the flow conduit to shear the liquid feed/steam mixture to create liquid feed droplets of reduced size and (iv) a disperser at the outlet of the discharge nozzle to provide a spray jet of liquid feed having an increased surface area relative to a cylindrical jet. The nozzle assembles are particularly useful in fluid coking units using heavy oil feeds such a tar sands bitumen.
Abstract:
A system is provided for the production of heavy crude oil from an undersea reservoir, and for the treatment of the crude oil to facilitate its transport. A floating body (12) which produces the heavy crude oil, carries a hydrocarbon cracking station (32) that cracks the heavy crude into light liquid and gaseous hydrocarbons, and that uses heat resulting from the cracking to produce pressured steam. The pressured steam is used to drive a steam-powered engine (72) (with pistons or a turbine) that drives an electrical generator (74) whose electricity powers the system.
Abstract:
Residual oil from the processing of crude oil, natural bitumen or oil sand is mixed in a mixer with granular, hot coke as heat carrier (heat carrier coke) in a weight ratio of 1:3 to 1:30, where on the granules of the heat carrier coke there is first of all formed a liquid residue film which partly evaporates in the mixer. Gases and vapors and moist, sticky coke are withdrawn from the mixer. The mixture of coke and residual oil is introduced into a subsequently connected stirred tank in which the mixture slowly moves downwards while being stirred mechanically at a temperature of 450 to 600° C. and preferably at 480 to 550° C. Dry, flowable coke is withdrawn from the stirred tank. Usually, the dwell time of the heat carrier coke in the stirred tank is 1 to 30 minutes.
Abstract:
A process for deasphalting a residua feedstock by use of a short vapor contact time thermal process unit comprised of a horizontal moving bed of fluidized hot particles. It is preferred that a mechanical means be used to fluidize a bed of hot particles.
Abstract:
Coal and residual oil are simultaneously processed in a reactor with a combustion zone at the bottom and a fluidized bed on top of it. The residual oil is injected into heat exchange relationship with the top of the fluidized bed where it is cracked with heat generated by the combustion.
Abstract:
A fixed-sulfur, solid fuel product is obtained by an improved coking process wherein petroleum fractions are coked in the presence of added alkaline earth metal oxides. The fixed-sulfur, solid fuel product comprises coke and from about 3 to 30 weight percent, preferably from about 5 to 15 weight percent, "ash" (calculated as calcium oxide) derived from the alkaline earth additive. The quantity alkaline earth metal oxide or precursor thereof added to the coking zone is dependent on the sulfur content of the product coke and on the desired ash content of the solid fuel product. The coking zone may comprise delayed, fluid bed, or moving bed cokers.
Abstract:
An improved method for retorting oil shale with heat-carrying bodies comprising relatively coarse attrition resistant, non-oil sorbing, shale ash particles wherein oil recovery is maximized. After retorting, the spent oil shale and heat-carrying bodies are transferred to a reheating vessel or combustor. The reheating vessel contains a dense phase fluidized bed wherein the fixed carbon contained in the spent shale is combusted at temperatures between 1100.degree. F. and 1600.degree. F. to reheat the heat-carrying bodies. The invention is based on the finding that the decomposition of kerogen, which is present as a binder in raw oil shale, leaves pores within kerogen-rich shale which results in relatively large surface areas. Attrition of the kerogen-rich shale in the dense phase fluidized bed at a superificial gas velocity of 7-14 ft/sec reduces the size of this porous, friable material and allows it to be removed in the exit gas stream as fines. The larger particles remaining in the fluidized bed originated as kerogen-lean shale and thus lack the surface area and resulting sorption capacity to adversely affect retorting. These relatively coarse, attrition resistant, non-oil sorbing particles thus may be used effectively as heat-carrying bodies.In another feature of the invention, recovery of sensible heat from the coarse and fine combusted spent shale particles is accomplished in two separate coarse and fine fluidized bed coolers operated at specific conditions to maximize heat transfer and energy utilization.
Abstract:
A process for purifying aromatic hydrocarbons contained in liquid products of refining petroleum fractions or liquid products of coal coking or low-temperature carbonization from non-aromatic hydrocarbons which comprises heat-treatment of said liquid products at a temperature ranging from 750.degree. to 950.degree. C. under a pressure within the range of from 1 to 10 atm in the presence of acyclic C.sub.2 -C.sub.4 hydrocarbons employed separately or in various combinations at a weight ratio between said acyclic hydrocarbons and said liquid products being of at least 0.3. The heat-treatment results in a vapor-gas mixture which is cooled to isolate a condensate containing predominantly aromatic hydrocarbons. The process is technologically simple and makes it possible to purify aromatic hydrocarbons practically without decomposition thereof.