Titanium material and coated titanium material

    公开(公告)号:US12163245B2

    公开(公告)日:2024-12-10

    申请号:US17295134

    申请日:2020-01-23

    Abstract: A coated titanium material includes a titanium material and a coating film formed on a surface of the titanium material. A Ti-based oxide is included in an interface between the titanium material and the coating film. The Ti-based oxide is one or both rutile type TiO2 and Ti2O3. In a case where a cut surface of the coating film is formed by using a SAICAS method under conditions that a horizontal speed is 2 μm/s and a vertical speed is 0.1 μm/s, on the cut surface, an area percentage of the Ti-based oxide is 30.0% or more in a region having a distance of 15 μm from a reference line specified on the basis of a boundary line, which is an intersection line between the cut surface and the interface, to a coating film side.

    Bone Implant with Porous Membrane and Method for Preparation Thereof

    公开(公告)号:US20230364309A1

    公开(公告)日:2023-11-16

    申请号:US18246635

    申请日:2021-09-24

    Inventor: Yuzhong LIU

    Abstract: The present invention relates to a bone implant with a porous lithium tantalate membrane and a method for preparing the bone implant. The bone implant comprises: (1) a substrate; and (2) a porous membrane on the substrate, wherein the substrate is selected from the group consisting of a tantalum substrate, a niobium substrate, a tantalum-niobium alloy substrate and a titanium substrate, and wherein the porous membrane is selected from the group consisting of a porous lithium tantalate membrane, a porous lithium niobate membrane, a porous lithium tantalate-lithium niobate mixture membrane and a porous titanium oxide membrane. The bone implant of the present invention has one or more of the following beneficial effects: (1) The bone implant has excellent corrosion resistance; (2) the elasticity modulus of the bone implant can be adjusted according to process conditions so that it has higher biocompatibility with the elasticity modulus of a human or animal bone (such as an alveolar bone and a cranium); (3) the white color of the bone implant is close to the color of the bone itself and the bone implant has an aesthetic appearance; (4) the bone implant has excellent bacteriostatic properties.

    Assemblies and methods for anodizing a workpiece selectively using a combination of a mechanical mask and a gas bubble or air pocket mask

    公开(公告)号:US11535948B1

    公开(公告)日:2022-12-27

    申请号:US17587722

    申请日:2022-01-28

    Abstract: Metal components that require anodic coating or anodizing, may also require some surfaces of the component to be free of the anodic coating for the purpose of conductivity. The presence of the anodic coating on surfaces of the component that require conductivity would make those surface more electrically resistant or nonconductive. A combination of a gas pocket or air bubble to create a barrier to anodizing in a cavities of a workpiece (or in a cavity created by a conformal compression material) and the use of a (e.g., compressible) mask/seal material to mask off other surfaces though a gasket sealing function, is used. The mask/seal material may be compressed and makes a seal of some surfaces using pressure from clamping or pressure mechanisms. At least two opposing surfaces are masked by the compressive mask/seal material on one end and a gas pocket on the other end. The gas pocket will allow the anode to make firm electrical contact with the workpiece. The unmasked surfaces of the workpiece will be contacted by the electrolyte and consequently anodized. These anodized surfaces will have more electrical resistance (e.g., have higher resistance, and might even be non-conductive) than the masked surfaces that were not anodized. Further, the selectively anodized surfaces can be colored, seal, or have other conventional post anodizing processes applied.

Patent Agency Ranking