Abstract:
The invention is provided with an ignition control section and an injection control section. When partial compression ignition combustion is carried out, the ignition control section causes an ignition plug to carry out: main ignition in which a spark is generated in a late period of a compression stroke or an initial period of an expansion stroke to initiate SI combustion; and preceding ignition in which the spark is generated at earlier timing than the main ignition. Also, when the partial compression ignition combustion is carried out, the injection control section causes an injector to inject fuel at such timing that the fuel exists in a cylinder at an earlier time point than the preceding ignition. Timing of the preceding ignition is more advanced when a swirl flow is gentle than when the swirl flow is strong.
Abstract:
A portable flexible fuel generator, having an engine, includes: a cylinder and a spark plug in the cylinder, a primary fuel tank fluidly connected to the cylinder, an air intake path fluidly connecting atmosphere to the cylinder, a start module including a starting fuel tank holder and a starting fuel line, where the starting fuel line is fluidly connected to the air intake path, a coolant path which provide a flow path for coolant to cool the cylinder, and a thermal controller along the coolant path. Furthermore, the engine has full cylinder cooling.
Abstract:
The present disclosure relates to a boost system that provides boost pressure to an air intake manifold of an engine. The boost system includes a turbocharger and a supercharger that cooperate to provide the pressure boost to the air intake manifold. The boost system also includes a hybrid drive system for powering the supercharger.
Abstract:
An internal combustion engine is provided. The internal combustion engine includes a supercharger that is arranged in an intake passage; an intercooler that is arranged downstream of the supercharger in a direction of intake air flow, in the intake passage; and a blow-by gas returning apparatus. The blow-by gas returning apparatus includes a bypass passage, an ejector, and a blow-by gas passage. The bypass passage connects a first position that is arranged between the supercharger and the intercooler, and a second position that is arranged downstream of the intercooler of the intake passage together. The ejector is arranged in the bypass passage, and configured to draw in blow-by gas from the crankcase through the blow-by gas passage when air flows through the bypass passage from the first position toward the second position.
Abstract:
An exhaust system for a lean-burn internal combustion engine is described, and includes an injection system for injecting reductant into an exhaust gas feedstream upstream of a selective catalytic reduction device (SCR). A control method for controlling the injection system includes determining an upstream NOx gas concentration upstream of the SCR device, determining a measured downstream NOx gas concentration based upon a signal output from a sensor configured to monitor NOx gas concentration downstream of the SCR device, and determining an estimated downstream NOx gas concentration based upon an executable model. A first correlation between the upstream NOx gas concentration and the measured downstream NOx gas concentration is determined, and a second correlation between the upstream NOx gas concentration and the estimated downstream NOx gas concentration is determined. The reductant injection is controlled based upon the first and second correlations.
Abstract:
A control device (7) of a cylinder direct injection type internal combustion engine (1) controls a fuel injection device (4) and an ignition device (5), executes injection of the fuel and ignition over multiple times, and executes a control of varying an interval between a timing of the injection of the fuel and a timing of the ignition, at the time of an ignition start in which the fuel is injected into a combustion chamber (3) in an expansion stroke with rotation of an output shaft (6) is stopped state and the fuel is ignited to start the rotation of the output shaft (6). The control device (7) varies the interval between the timing of the injection of the fuel and the timing of the ignition by adjusting a correlation of a pitch of the injection of the fuel over multiple times and a pitch of the ignition over multiple times. Therefore, the internal combustion engine (1) and the control device (7) have an effect of being able to enhance the starting property.
Abstract:
A fuel injector having an injector axis, comprising a first nozzle aiming in a first radial direction; a first nozzle pair aiming in radial directions each equally angled relative to the first direction, closest to the first radial direction, and having a longest radial offset; a nozzle second pair in radial directions each equally angled relative to the first direction; and another nozzle aiming opposite the first radial direction and having a shortest radial offset.
Abstract:
A control system of an internal combustion engine which performs diffusion combustion by compression autoignition on fuel injected in a main injection in at least a partial operating range and which performs stratified combustion by spark ignition using a spark plug on fuel injected prior to the main injection. The control system determines whether or not the diffusion combustion occurs and performs combustion by spark ignition using the spark plug on the fuel injected in the main injection when it is determined that the diffusion combustion does not occur.
Abstract:
The present technology relates generally to amplification for fuel injectors. In some embodiments, an injector for introducing gaseous or liquid fuel into a combustion chamber includes an injector body having a base portion configured to receive fuel into the body and a valve coupled to the body. The valve can be movable to an open position to introduce fuel into the combustion chamber. The injector further includes a valve operator assembly. The valve operator assembly can include a valve actuator coupled to the valve and movable between a first position and a second position upon receipt of an initial motion. The valve operator assembly can also include an amplifier configured to receive the initial motion from the valve actuator, amplify the initial motion, and transfer the amplified motion to the valve.
Abstract:
The purpose of the present invention is to suppress, in an internal combustion engine in which two injectors are disposed in a line upstream and downstream in an intake pipe, adhesion of deposits to the downstream-side injector. In order to suppress such adhesion, a fuel injection control device according to one embodiment of the present invention operates both injectors together when a required fuel injection amount is equal to or greater than a reference value. The reference value is set to a value equal to or greater than the sum of lower limit injection amounts of the injectors. In such case, the fuel injection control device adjusts the proportion of fuel injected from the injector disposed downstream in the intake pipe to be greater than the proportion of fuel injected from the injector disposed upstream in the intake pipe.