Abstract:
A controller may use energy packets to control a prime mover of a machine. The controller may include an energy packet measurement control to calculate energy packets and convert the energy packets into a fuel valve reference. Further, a frequency control may receive system feedback associated with the monitored machine and generate a frequency correction based on the system feedback. The controller may add the energy packet value and the frequency correction to determine a prime mover power reference and provide the prime mover power reference to a fuel valve control of the machine.
Abstract:
A gas turbine engine having a combustor, turbine and transition duct to channel hot gas from combustor to turbine. The transition duct has an internal surface on which the hot gas impinges causing a varying temperature profile. A thermal barrier coating is located on the internal surface having a first and second thermal barrier coating patch. The first patch having a first thickness located on the internal surface and within a first area subject to a higher temperature than an uncoated part and bounded by a first isotherm of a first temperature. The second patch having a second thickness located on the internal surface and within a second area subject to a higher temperature than the uncoated part and bounded by a second isotherm of a second temperature. The second temperature is higher than the first temperature and the second thickness is thicker than the first thickness.
Abstract:
A pressure sensor for fluid control system for an aircraft includes an enclosure, a piston assembly, and a bellows. The enclosure has a body that extends between a first end and a second end. A first fluid line extends to the first end. The piston assembly has a piston head that is movably disposed within the enclosure and a piston rod that extends from the piston head and through the second end. The bellows is disposed within the body that extends between and is operatively connected to the piston head and the first end.
Abstract:
A throttle control assembly which includes a throttle body housing, an adapter integrally formed with the throttle body housing, a housing portion being part of the adapter, and a central port which extends through the throttle body housing and the adapter. A first groove is integrally formed as part of the adapter, a second groove is integrally formed as part of the throttle body housing, and a rib portion disposed between the first groove and the second groove. The rib portion is formed as part of the adapter, and an anti-rotation feature is integrally formed with the throttle body housing. The anti-rotation feature is integrally formed with the throttle body housing during a molding process. The anti-rotation feature may be formed in different locations on the outer surface of the housing, allowing the throttle body assembly to be suitable for various applications having different design and packaging requirements.
Abstract:
In at least some implementations, a charge forming device includes a main body, a throttle valve and an adjuster. The main body includes a main bore through which fluid flows for delivery to an engine. The throttle valve is carried by the main body and moveable relative to the main bore to control fluid flow through the main bore. And the adjuster is moveable relative to the throttle valve and engageable with the throttle valve to adjust the range of motion of the throttle valve. In at least some implementations, the adjuster limits the range of motion of the throttle valve when the adjuster is engaged with the throttle valve.
Abstract:
A control device for an engine, which controls an engine torque based on operation of an organ-type accelerator pedal is provided. The control device includes an accelerator opening detector for detecting an accelerator opening based on an angle of an accelerator pedal, a target acceleration setter for setting a target acceleration based on the accelerator opening, and an engine controller for adjusting an engine torque to achieve the target acceleration. The accelerator pedal is arranged to have a pedal angle at a predetermined initial pedal angle when the accelerator pedal is not pressed. The target acceleration setter sets the target acceleration to zero when the accelerator pedal is pressed and the accelerator opening is within a range where a difference between the pressed pedal angle and the initial pedal angle is between 2 and 4 degrees.
Abstract:
In one embodiment, an engine system may include an engine control system configured to receive a first pressure signal transmitted from a first pressure sensor disposed downstream from a throttle valve, receive a first temperature signal transmitted from a first temperature sensor disposed downstream from the throttle valve, derive a first pressure representative of the first pressure signal, derive a first temperature representative of the first temperature signal, derive a desired air-fuel mixture flow through the throttle valve, derive a first throttle position using a model, wherein the model is configured to use the desired air-fuel mixture flow, the first pressure, and the first temperature as model input, derive a second throttle position using a map, compare the first and second throttle positions, and apply the first throttle position to control the throttle valve when the first and second throttle positions are within one or more calibrated thresholds.
Abstract:
A device for dosing inlet fluid in an engine and for regulating the temperature thereof is disclosed. The device has a dosing body on which a first and a second circulation channel are arranged. First and second movable flow dosage flaps are arranged in the circulation channels. The dosing body also includes an actuator motor and a kinematic capable of actuating the first and/or the second flap. The device additionally includes first and second tubes, at least one of the tubes having a means for modifying the temperature of the fluid. The kinematic is shaped so as to position at rest, if flap actuation is lost, the first flap of the cool channel being then in a fully open position and the second flap of the hot channel being then in a fully closed position.
Abstract:
A combination lever for a carburetor is an integrated shutoff lever and fuel valve. The combination lever includes a longitudinal portion for a handle and a cylindrical portion including a fuel path for the fuel valve. A carburetor casing is shaped to form a valve chamber and a carburetor chamber. The valve chamber supports the cylindrical portion. A directional cavity formed in the cylindrical portion of the combination lever regulates a flow of fuel to the carburetor chamber according to a rotation of the combination lever. At one position the directional cavity opens the fuel path so that fuel flows into the carburetor chamber. At another position the directional cavity closes the fuel path so that the flow of fuel is blocked. The combination lever may also include an abutment portion to engage a switch for completing an electrical shutoff path to an engine coupled to the carburetor.
Abstract:
An engine system and method for operating an engine including a central throttle and a port throttle is disclosed. In one example, the central throttle and port throttle are adjusted to improve air flow distribution to engine cylinders. The system and method may be particularly beneficial for turbocharged engines.