Abstract:
A hydro turbine of a hydroelectric power plant operates with reduced cavitation at low power levels. A using at least one motion sensor coupled to a rotor of the hydro turbine, during operation of the hydro turbine is used to generate at least one metric indicative of an effect of cavitation on the hydro turbine. The metric is used by an automated governing system to change the operation of the hydro turbine to reduce cavitation.
Abstract:
A hydraulic machine of the Francis-type includes: an impeller with blades; a guide vane assembly with a ring of guide vanes, a vane-free space extending between the impeller and the guide vane assembly; and at least three resonators for suppressing pressure fluctuations, the resonators respectively including a chamber and a tube connector, the tube connector being connected to the chamber, the tube connector including an end that faces away from the chamber and that opens into the vane-free space, the resonators being configured for suppressing the pressure fluctuations occurring during the operation of the hydraulic machine, the resonators being arranged at a uniform distance from each other in a circumferential direction around the impeller, and the resonators being adjusted to a resonant frequency which is one and the same relative to one another.
Abstract:
The invention concerns a hydraulic turbine comprising blades (2) fixed to a runner crown (12) and to be actuated in rotation around an axis of rotation, each blade being comprised between a leading edge (8) and a trailing edge (10), a stationary head cover (14) and a chamber (16) being located between said runner crown (12) and said head cover (14) or within the head cover, said runner further comprising: means (22) forming at least one passage for water between said chamber and a chamber (28) in the runner tip; an upper portion (121) and a lower portion (122) of the said runner crown, said upper portion (121) having a larger diameter than said lower portion (122) so as to define a channel (24) between them, said channel leading to an exhaust volume (3) of the runner.
Abstract:
A hydraulic turbine includes a rotor with a runner, which is concentrically surrounded by a stator, whereby the runner comprises a plurality of runner blades arranged and distributed in a ring around a rotor axis, and each runner blade extends between a runner crown and a runner band; whereby the stator comprises a plurality of guide vanes arranged and distributed in a ring around the rotor axis, and each guide vane extends between an upper stator ring and a lower stator ring; and whereby a predetermined clearance is provided at least between the runner band and the lower stator ring. A substantial reduction of pressure pulsations in the vane-less gap between said runner blades of said runner is achieved by substantially increasing said predetermined clearance.
Abstract:
A turbine unit for a hydraulic installation, and more in particular it deals with the hub of the turbine unit. The present invention proposes to provide means for adjusting a gap extent formed between the hub and the inner edge of the blade, this way dramatically increasing the performance of the turbine.
Abstract:
A turbine unit for a hydraulic installation, and more in particular it deals with the hub of the turbine unit. The present invention proposes to provide means for adjusting a gap extent formed between the hub and the inner edge of the blade, this way dramatically increasing the performance of the turbine.
Abstract:
A pump with high performance and cleanability includes a casing having a smaller volute and a larger volute; a space between an outer circumference of an impeller and a starting end of the smaller volute being greater than that of the larger volute, generating a circulating flow of self-priming water from the smaller volute to the larger volute; and a diffusing part of the larger volute being formed into an upright, cylindrical self-priming water separating chamber guiding the self-priming water from the smaller volute to flow in for air-water separation. An inner circumference part of the casing is formed concentric with the outer circumference of the impeller with a predetermined space therebetween; defining members are protrusively disposed on the inner circumference part of the casing so as to define the shapes of the two volutes; and the self-priming water separating chamber is made attachable to and detachable from the casing.
Abstract:
A blade arrangement with a rotor and a plurality of blades which are distributed in a ring along the circumference of the rotor is provided. Two immediately adjacent blades of the ring form a blade pair, between the blades of which a damping element is arranged, and wherein the respective damping element comes into contact with the two blades of the blade pair assigned to them during a rotation of the rotor about a rotor axis as a result of a centrifugal force which acts in the radial direction. In order to bring about frequency detuning of the oscillation properties of blades, as a result of which machining of the turbine blade becomes unnecessary, it is proposed that the blade ring has at least two blade pairs with different damping elements.
Abstract:
This wheel comprises a plurality of vanes (2) arranged on a crown (3) and is equipped with a tip-forming member (10) attached to a central region (32) of the crown or hub of the wheel (1), radially inside the vanes (2), the crown defining a wet surface (31) for guiding a flow (E) passing between the vanes. The tip-forming member (10) is provided with at least one opening (121) for diverting a fraction (E1) of the flow towards the internal volume (V10) of this member. This member comprises a frustoconical annular skirt (11) and at least one fin (15) arranged in its internal volume (V10) and able to modify the path of the flow fraction (E1) entering this volume through the opening (121). This fin (15) extends as far as the edge (112) of the skirt (11) which defines an outlet opening (14) of the member (10) for the flow fraction (E1).
Abstract:
A Pelton hydraulic machine through which a main flow of water passes including at least one Pelton turbine manifold with at least a turbulent zone or a reduced-pressure zone being formed close to the manifold and wherein a secondary flow drawn from the main flow, and unaltered in relation to the main flow, is injected into the turbulent or reduced-pressure zone so as to alter the main flow locally or increase the pressure in the zone.