Abstract:
A wind turbine tower (14) is supported on a transition piece (18) that connects the tower (14) to a foundation and that defines a space (28) beneath the lower end of the tower (14). Electronic components positioned within a removable module (24) in the lower portion of a wind turbine tower may be removed through a lower end of the tower for service or replacement.
Abstract:
A system for energy production from renewable sources comprising a support structure comprising a first and second pole (11) with a vertical axis wind generator (10) positioned on each of said poles; said first and second poles each comprising a connection element (29) positioned at their summit with a first seat for a first cable (24) and a second seat for a second cable (25); said first cable and said second cable being positioned mutually perpendicular; the ends of said first and second cables being fixed to the ground; said first and second poles (11) being each anchored to a post (12) fixed into the ground by means of a hinge (13); said wind generator (10) having a longitudinal central through hole to enable mounting on said pole and a lower and upper locking ring (9) associated with bearings (18) to enable said wind generator to rotate.
Abstract:
A self-installing offshore column stabilized semi-submersible platform has at least one vertical buoyant ballastable column, a telescoping keel tank or stiffened damper plate movably connected with the vertical column that extends and retracts relative to a lower end thereof, and a non-collapsible turbine tower or a tilt and telescoping tower coupled to an upper end of the vertical column that telescopes and reciprocates relative thereto between a horizontal retracted position and an axially extended vertical position. A wind turbine with blades is coupled to a top portion of the tower assembly. The relative position and weight of the keel tank or damper plate is selectively adjustable to raise or lower the center of gravity of the entire mass of the semi-submersible platform including the wind turbine and tower assembly with respect to the center of buoyancy of the platform.
Abstract:
An airflow generation device disposed on a moving body such as a windmill blade in which a conduction state of an electrode can be sufficiently secured, and the like are provided. An airflow generation device of an embodiment includes a base, a first electrode, and a second electrode, and generates an airflow when a voltage is applied between the first electrode and the second electrode. The base is formed of a dielectric having a flexibility. The first electrode is provided on a front surface side of the base. The second electrode is provided inside the base. Here, the first electrode includes a metal electrode part and an elastomeric electrode part. The metal electrode part is formed of a metal material. The elastomeric electrode part is formed by using an elastomeric material, and has a conductivity. Further, the elastomeric electrode part includes a portion covering the metal electrode part.
Abstract:
The preset invention relates to wind turbines and, in particular inclining a wind turbine from the vertical position. A tower (102) of a wind turbine may be inclined from the vertical position in order to reduce the loads on the tower (102).
Abstract:
A floating offshore wind power generation facility includes a floating body, a mooring cable, a tower, and a windmill installed at the top of the tower, the windmill including a nacelle and a plurality of blades. The rotation axis of the windmill has a predetermined upward angle to avoid contact between the blades and the tower, and the windmill is of a downwind type in which the blades are attached to the leeward side of the nacelle and installed with the back surfaces of the blades facing windward, and the mooring point of the mooring cable to the floating body is set at a position below the surface of the sea and higher than the center of gravity of the floating body.
Abstract:
In embodiments of the present invention improved capabilities are described for a mobile wind power support structure, comprising a superstructure with mobile platform support structures, and a plurality of deployable rotating wind power structures, wherein the plurality of deployable rotating wind power structures are positioned in the superstructure through a wind orientation facility.
Abstract:
A self-supporting wind turbine tower with walls comprising an upper portion (12) and a lower portion (14). Substantially all of the upper portion (12) is formed from a composite plastic. Substantially all of the lower portion (14) is formed from mild steel.
Abstract:
A method and apparatus for constructing a tower, where the apparatus may include a structure including a foundation including a plurality of hydraulic cylinders; a truss tower located on the foundation and configured to support a tower built on the foundation; and a controller configured to control extension and retraction of the hydraulic cylinders.
Abstract:
A wind turbine flange connection between a hub and a nacelle of the wind turbine, a wind turbine, a wind turbine hub and a wind turbine nacelle is provided. The hub of the wind turbine comprises a first flange and the nacelle of the wind turbine comprises a second flange. The first flange and the second flange are connected to each other by a number of connection means, to transfer forces between the first flange and the second flange. The first flange comprises a plurality of holes and the second flange comprises a plurality of holes corresponding to the holes in the first flange. Shear pins are arranged in the holes in the flanges to transfer rotational forces between the hub and the nacelle.