摘要:
An axial alignment system for a rotary electric machine rotor includes: at least one first fixing ring; at least one first permanent magnet ring; at least one second fixing ring; and at least one second permanent magnet ring.
摘要:
A magnetic bearing system for controlling magnetic coupling between a mobile carriage and a guideway. The magnetic bearing system includes at least two engines successively arranged in a travel direction, wherein each of the at least two engines comprises at least two poles. The at least two engines have centerlines in the travel direction that are fixedly offset from each other, and the at least two engines are configured to be magnetically coupled to the guideway through air gaps.
摘要:
A magnetic bearing system for controlling magnetic coupling between a mobile carriage and a guideway. The magnetic bearing system includes at least two engines successively arranged in a travel direction, wherein each of the at least two engines comprises at least two poles. The at least two engines have centerlines in the travel direction that are fixedly offset from each other, and the at least two engines are configured to be magnetically coupled to the guideway through air gaps.
摘要:
A magnetic bearing system for controlling magnetic coupling between a mobile carriage and a guideway and a method for controlling the magnetic bearing system. The magnetic bearing system includes at least one engine, which includes at least two poles, at least one permanent magnet and at least one coil. The engine is configured to be magnetically coupled to the guideway through at least one air gap.
摘要:
A structure and method of operation of a journal bearing is disclosed that minimizes contact of the shaft with the sleeve during start up and slow down of rotation of the shaft relative to the sleeve, or vice versa. The bearing assembly includes a gravitational load reduction mechanism with magnets disposed on the sleeve and on the shaft in alignment with one another. The magnet(s) on the shaft interacts with the magnet(s) disposed on the sleeve to provide a force against the pressure of the shaft towards the sleeve generated by gravity on the rotating component. The magnets enable centering of the rotating component within the stationary component during low rotation and non-rotation. This prevents rubbing of the rotating journal bearing component surfaces, e.g., sleeve, against the stationary journal bearing component, e.g., shaft, during assembly, ramp-up, and coast-down when the journal bearing fluid provides minimal or no bearing centering capability.
摘要:
A flywheel (6) is provided that comprises a rotatable shaft (7). At least one end of the rotatable shaft (7) is provided with a recess (51) and two magnets (15, 20, 31, 36). The flywheel (6) is provided with support means (18, 23, 34, 39) with the support means comprising: a first arrangement (18, 34) of magnets (17, 33) for vertical stabilization of the shaft (7); and a second arrangement (23, 39) of magnets (22, 38) for horizontal stabilization of the shaft (7). The first of the two magnets (15, 31) of the shaft (7) interacts with the first arrangement (18, 34) and the second of the two magnets (20, 36) interacts with the second arrangement (23, 39).
摘要:
A spindle device (10) includes a rotating shaft (12) having a plurality of turbine blades (11) provided in a circumferential direction, a housing configured to accommodate therein the rotating shaft (12), and a gas bearing (40) mounted to the housing (20) and configured to float and support the rotating shaft (12) to the housing (20) in a contactless manner by supply of a gas. The rotating shaft (12) is configured to be rotatively driven by jetting gas to the plurality of turbine blades (11). The plurality of turbine blades (11) overlaps the gas bearing (40) in an axial direction. Therefore, there is provided the spindle device having a flat configuration in which an axial length is short and capable of implementing miniaturization and weight saving.
摘要:
A marine turbine comprising a stator, a rotor, the rotor being able to be driven in rotation around an axis or rotation by a stream of a liquid, and at least one first bearing for supporting the rotor, the or each first bearing, comprising a magnetic stator element secured to the stator and magnetic rotor element secured to the rotor. The marine turbine further comprises at least one second bearing for supporting the rotor, the or each second bearing comprising at least one rolling element.
摘要:
The present invention relates to a rim driven propeller unit for a vessel, where a number of permanent magnets (4) are arranged round the propeller unit's rotatable rotor housing (1), comprising a number of propeller blades (3), and a number of permanent magnets round the propeller unit's external, stationary casing (2) housing the rotatable rotor housing, where the permanent magnets round parts of the rotatable rotor housing and the external, stationary casing's circumference are provided located above one another with like polarity, while other parts of the rotatable rotor housing and the external, stationary casing are provided located facing one another with opposite polarity, whereby the rotor housing and the stationary casing are repelled by and attracted to one another respectively, thereby being prevented from coming into contact with one another.
摘要:
A radial permanent magnetic suspension bearing, comprising: a horizontal shaft (2), a support bearing (4), and a radial permanent magnet suspension bearing (3); the permanent magnetic suspension bearing (3) comprises a stator pull-push magnet (31) disposed on a stator casing (1) via a permeability magnetic substrate (322), and a rotor pull-push magnet (32) disposed on the horizontal shaft (2) correspondingly via an annular permeability magnetic substrate (322), having a radial gap and forming an axial pull-push magnetic circuit with the stator pull-push magnet (31); wherein the rotor pull-push magnet (32) consists of two or more annual permanent magnets axially and closely fitting, with magnetic poles alternately arranged in the axial direction; the stator pull-push magnet (31) consists of two or more annular permanent magnets axially and closely fitting, with magnetic poles alternately arranged in the axial direction, disposed over the horizontal panel where the axle center of the horizontal shaft (2) is located, and being symmetrical about the perpendicular bisection plane of the horizontal shaft. The bearing has a simple structure and greatly reduces energy consumption, without wear or bearing maintenance.