Abstract:
A lidar sensor comprising a laser, an optical sensor, and a processor. The lidar sensor can determine a distance to one or more objects. The lidar sensor can optionally embed a code in beams transmitted into the environment such that those beams can be individually identified when their corresponding reflection is received.
Abstract:
A laser designator system using modulated CW laser diodes and a conventional high pixel count image sensor array, such as CCD or CMOS array. These two technologies, diode lasers and imaging sensor arrays are reliable, widely used and inexpensive technologies, as compared with prior art pulsed laser systems. These systems are distinguished from the prior art systems in that they filter the laser signal spatially, by collecting light over a comparatively long period of time from a very few pixels out of the entire field of view of the image sensor array. This is in contrast to the prior art systems where the laser signal is filtered temporarily, over a very short time span, but over a large fraction of the field of view. By spatially filtering the signal outputs of the individual pixels, it becomes possible to subtract the background illumination from the illuminated laser spot.
Abstract:
A laser Doppler velocimeter is formed using erbium-doped fiber as the lasing medium. Within the velocimeter, all optical signals, transmitted and received, are handled by optical fibers. A telescope with a single optical fiber input/output interface acts as both the transmission device to focus the radiation at a specified point, and as the receiving system for collecting reflected radiation. The portion of the reflected radiation collected by the receiving system is analyzed to determine the Doppler shift caused by targets at the focal point of the telescope.
Abstract:
A system using two magnetic quadrupole antennas, two magnetic dipole antennas and means for processing the respective antenna signal outputs provides unambiguous estimates of elevation and polarization for an incident RF signal. The system uses an efficient procedure to process the signals from a small aperture array of fixed loop elements for the purpose of providing radio direction of arrival information that is free of intrinsic polarization error. The directional information is developed by performing a simultaneous arctangent operation on signals output from the antennas or as the measured phase difference between a quadrature summed quadrupole output and a quadrature summed dipole output compensated by a phase offset between the dipole antennas and the quadrupole antennas.