Abstract:
A two-phase immersion cooling apparatus may include an immersion tank with a primary condenser in thermal communication with an interior volume of the immersion tank and a vapor management system fluidically connected to the immersion tank. The vapor management system may enable the apparatus to effectively manage periods of high vapor production by removing vapor and other gases from a headspace of the immersion tank, condensing the vapor to liquid, and returning the liquid to the immersion tank.
Abstract:
An apparatus with two anchors including a housing, a movable element, and a rotary element is provided. The housing includes a first expansion unit, a second expansion unit, and a linkage. First alignment structures are disposed in the movable element and anti-rotation structures are disposed in the linkage. When the movable element and the rotary element enter the housing from two ends and are coupled along an axis, the movable element and the rotary element can approach each other to expand the first expansion unit and the second expansion unit to form two anchors. The apparatus with two anchors secures a sensor in a variety of environments such as walls or machines. When the apparatus with two anchors fixes a sensor in a hole of a stamping machine, the impact force does not cause stress concentration on the sensor so as to improve the reliability of the sensor.
Abstract:
An air conditioning device for vehicle includes a first water-refrigerant heat exchanger, a second water-refrigerant heat exchanger, a first bypass passage, and a second bypass passage. The first bypass passage branches at a point of a coolant passage from a cooling portion of a heating component in the vehicle to the second water-refrigerant heat exchanger, and the first bypass passage is capable of being communicated with the coolant passage at an upstream side of the first water-refrigerant heat exchanger. The second bypass passage bran at a point of the coolant passage from a heater core to the first water-refrigerant heat exchanger, and the second bypass passage is capable of being communicated with the coolant passage at a downstream side of the first water-refrigerant heat exchanger. A part of the first bypass passage which includes a downstream end and a part of the second bypass passage which includes an upstream end are shared.
Abstract:
An airflow sensor for a heat sink has a substantially flat base portion and a deformable upper portion electrically coupled to the base portion that contacts a conductive strip. As airflow increases, the deformable upper portion deforms and moves away from the source of airflow, which moves the point of contact between the deformable upper portion and the conductive strip farther away from the source of the airflow. The difference in the point of contact is measured, and is used to characterize the airflow sensor for different airflows. Data from the airflow sensor can then be logged during system operation. When needed, the data from the airflow sensor can be read from the log and converted to airflow using the airflow sensor characterization data. In this manner the airflow through a heat sink may be dynamically measured, allowing analysis and correlation between system events and airflow through the heat sink.
Abstract:
There is provided a functional element capable of preventing an oblique vibration due to a vibration leakage phenomenon from propagating to degrade the detection accuracy. A gyro element as the functional element includes a support body, a detection section, a drive coupling section having a first part and a second part, and a mass section connected to the drive coupling section, and connected to the support body via the drive coupling section, and the mass section performs the drive vibration in a direction along a third axis parallel to a normal line of a plane including the first axis and the second axis perpendicular to each other.
Abstract:
A coolant cooler has a cooling block formed by tubes arranged parallel to one another. The tubes form multiple first flow ducts through which a first fluid can flow. In regions between the tubes multiple second flow ducts are formed through which a second fluid can flow. The coolant cooler includes a first collecting box on which a first fluid inlet is arranged and a second collecting box on which a first fluid outlet is arranged. The first flow ducts are in fluid communication with a first cooling circuit via the first fluid inlet, the first fluid outlet, and the collecting boxes. The first or second collecting box has a second fluid inlet and a second fluid outlet such that the second fluid inlet, the respective collecting box, and the second fluid outlet are in fluid communication with a second cooling circuit.
Abstract:
A valve can be incorporated as an integral part of the heat exchanger as a plug-in item that can be located anywhere desired between the inlet and outlet flow manifolds of the heat exchanger.
Abstract:
A saddle-straddling type motor vehicle on which an object is loadable for traveling with the motor vehicle. The motor vehicle includes a main body having a wheel, a motor that generates driving force for moving the main body, a wheel force calculator configured to calculate wheel force exerted between the wheel and a surface of a road on which the motor vehicle is traveling, and a wheel force corrector configured to correct the wheel force calculated by the wheel force calculator based on a condition of the object loaded on the motor vehicle.
Abstract:
A zoned HVAC system comprises an HVAC unit including a climate control system and an air mover. In addition, the system comprises a supply air duct in fluid communication with the outlet of the HVAC unit. Further, the system comprises a return air duct in fluid communication with the inlet of the HVAC unit. Still further, the system comprises a plurality of zones positioned between the supply air duct and the return air duct. Moreover, the system comprises a bypass duct extending between the supply air duct and the return air duct. The bypass duct includes an active bypass damper having an open position, a closed position, and a plurality of partially opened positions. The system also comprises a control device configured to control the position of the bypass duct.
Abstract:
An industrial robot system includes an end effector connectable to a robot arm, a drive assembly, and a controller. The end effector includes a distal housing, a spindle assembly rotatable about a rotational axis, a drill bit rotatable about the rotational axis, and a sensor assembly. The sensor assembly includes a first light source, a second light source, and a photosensitive array. The first light source produces a first fan of light which is projected as a first line of light on the object surface. The second light source produces a second fan of light, which is projected as a second line of light on the object surface. The photosensitive array detects a first reflection line corresponding to the first line of light and a second reflection line corresponding to the second line of light.