COMPUTER-AIDED DIAGNOSTIC SYSTEM FOR EARLY DIAGNOSIS OF PROSTATE CANCER

    公开(公告)号:US20200285714A9

    公开(公告)日:2020-09-10

    申请号:US16030296

    申请日:2018-07-09

    Abstract: Systems and methods for diagnosing prostate cancer. Image sets (e.g., MRI collected at one or more b-values) and biological values (e.g., prostate specific antigen (PSA)) have features extracted and integrated to produce a diagnosis of prostate cancer. The image sets are analyzed primarily in three steps: (1) segmentation, (2) feature extraction, smoothing, and normalization, and (3) classification. The biological values are analyzed primarily in two steps: (1) feature extraction and (2) classification. Each analysis results in diagnostic probabilities, which are then combined to pass through an additional classification stage. The end result is a more accurate diagnosis of prostate cancer.

    COMPUTER-AIDED DIAGNOSTIC SYSTEM FOR EARLY DIAGNOSIS OF PROSTATE CANCER

    公开(公告)号:US20200012761A1

    公开(公告)日:2020-01-09

    申请号:US16030296

    申请日:2018-07-09

    Abstract: Systems and methods for diagnosing prostate cancer. Image sets (e.g., MRI collected at one or more b-values) and biological values (e.g., prostate specific antigen (PSA)) have features extracted and integrated to produce a diagnosis of prostate cancer. The image sets are analyzed primarily in three steps: (1) segmentation, (2) feature extraction, smoothing, and normalization, and (3) classification. The biological values are analyzed primarily in two steps: (1) feature extraction and (2) classification. Each analysis results in diagnostic probabilities, which are then combined to pass through an additional classification stage. The end result is a more accurate diagnosis of prostate cancer.

    SYSTEMS AND METHODS FOR IDENTIFYING RESPONDERS AND NON-RESPONDERS TO IMMUNE CHECKPOINT BLOCKADE THERAPY

    公开(公告)号:US20190179998A9

    公开(公告)日:2019-06-13

    申请号:US16006129

    申请日:2018-06-12

    Abstract: Techniques for determining whether a subject is likely to respond to an immune checkpoint blockade therapy. The techniques include obtaining expression data for the subject, using the expression data to determine subject expression levels for at least three genes selected from the set of predictor genes consisting of BRAF, ACVR1B, MPRIP, PRKAG1, STX2, AGPAT3, FYN, CMIP, ROBO4, RAB40C, HAUS8, SNAP23, SNX6, ACVR1B, MPRIP, COPS3, NLRX1, ELAC2, MON1B, ARF3, ARPIN, SPRYD3, FLI1, TIRAP, GSE1, POLR3K, PIGO, MFHAS1, NPIPA1, DPH6, ERLIN2, CES2, LHFP, NAIF1, ALCAM, SYNE1, SPINT1, SMTN, SLCA46A1, SAP25, WISP2, TSTD1, NLRX1, NPIPA1, HIST1H2AC, FUT8, FABP4, ERBB2, TUBA1A, XAGE1E, SERPINF1, RAI14, SIRPA, MT1X, NEK3, TGFB3, USP13, HLA-DRB4, IGF2, and MICAL1; and determining, using the determined expression levels and a statistical model trained using expression data indicating expression levels for a plurality of genes for a plurality of subjects, whether the subject is likely to respond to the immune checkpoint blockade therapy.

    Genetic, metabolic and biochemical pathway analysis system and methods

    公开(公告)号:US10248757B2

    公开(公告)日:2019-04-02

    申请号:US14103259

    申请日:2013-12-11

    Abstract: Identifying pathways that are significantly impacted in a given condition is a crucial step in the understanding of the underlying biological phenomena. All approaches currently available for this purpose calculate a p-value that aims to quantify the significance of the involvement of each pathway in the given phenotype. These p-values were previously thought to be independent. Here, we show that this is not the case, and that pathways can affect each other's p-values through a “crosstalk” phenomenon that affects all major categories of existing methods. We describe a novel technique able to detect, quantify, and correct crosstalk effects, as well as identify novel independent functional modules. We assessed this technique on data from four real experiments coming from three phenotypes involving two species.

Patent Agency Ranking